
Why under-onstrained systems are not that badSimon E.B. Thierry, Pasal Shrek, and Pasal MathisLSIIT, UMR CNRSUniversité de Strasbourg[simon.thierry,shrek,mathis℄�unistra.frAbstrat. Under-onstrained geometri onstraint systems are oftenonsidered as mis-onstrained systems whih have to be orreted bya ompletion mehanism. We expose here some works performed in ourteam and where under-onstrained systems are onsidered as a wish ofthe designer or a step used in order to solve a well-onstrained system.1 IntrodutionThe main goal of the geometri onstraint solving problem onsists in yieldingobjets delaratively spei�ed by the means of both a geometri desription in-volving the harateristi entities of the objet, like points, lines, planes or irles,and the relations between these entities, also named geometri onstraints.The problemati of geometri onstraint solving mainly arises in two �eldsof omputer siene. The �rst one is the Computer Aided Eduation domain(CAE), where problems from high shool mathematial programs like the fol-lowing one (see "Statement" below) have to be onsidered in the ontext ofdynami geometry ([1, 2℄) or Computer Assisted Proof in geometry ([3�6℄).Statement. Let D1 and D2 be twogiven lines, A be a point on D1, B be apoint on D2 and M any point. Construta line d passing through M and rossing
D1 in point X and D2 in point Y suhthat distane AX + BY is equal to agiven onstant l (see the �gure along-side). D1
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Although many features of this domain are interesting in order to have agood understanding of the geometri onstraint solving problemati, the fouswill not be put on this domain in this paper [7, 8℄.The seond domain where geometri onstraint solving has been more widelystudied is the Computer Aided Design and Drawing �eld (CAD) (see for instane[9�16℄). In this framework, the geometri entities and relations are given underthe form of a sketh on whih the user imposes a dimensioning (f. �gure 1).With the progress of omputer siene and the advent of CAD, tehnial de-sign softwares enrihed with funtionalities that automatially solve this kind ofproblems:



� the user draws a sketh using the graphial interfae of the software,� he/she then imposes a dimensioning with spei� tools,� a software module (alled a solver) modi�es the initial drawing so that itsatis�es the dimensioning.
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85 85Fig. 1. A tehnial sketh (left) and a saled solution (right) without its dimensioning.The dimensioning is normalized and depited by the arrows: straight arrows meandistane onstraints and urved arrows mean angular onstraints.The main di�erenes between CAE and CAD ontexts lie in the form of thestatements (literal vs pitorial) and the expeted nature of their solutions:� in CAE, one wants a way to onstrut all the solutions, i.e. a program or amaro whose input is the position of the given entities and whose output isthe solutions,� in CAD, the user only needs one drawing meeting the metri requirementsand lose to the shape of the sketh.The question of being able to yield all the solutions, even in CAD, is not asmeaningless as it seems at �rst sight. Indeed, it is di�ult, and umbersome, towrite down a non-ambiguous geometri spei�ation desribing a single objetand dimensioned skethes thus often de�ne more than one objet. For instane,the spei�ation of a triangle by the lengths of its three sides, generally de�nestwo triangles up to a displaement (also alled a diret isometry or a rigid bodymotion). In other words, when a vertex and an edge of the triangle are �xed,there are two solutions for this partiular geometri onstraint system. With ndistane onstraints between 2n−3 points, there are 2n−2 solutions. In the CADontext, the solver should be able to selet the more promising solution and/or toprovide a way to smartly browse the set of the solutions (alled solution spae).



A onstraint system with a �nite number of solutions is said well-onstrainedand various studies have yet been done to selet one solution and to browsethe solution spae [12, 17�20℄. A onstraint system with an in�nite number ofsolutions is said under-onstrained, and this state has often been viewed as anegative fat that the solver should detet and orret [21, 22℄. In fat, thingsare a little bit more ompliated sine the under-onstrainedness an be a userdesiderata, for instane in the ase of a spei�ation up to a diret isometry whihindeed leads to an in�nite number of solutions, the exat loation of a solutionbeing irrelevant, or in the ase of the spei�ation of a kinemati system, like apair of sissors.To takle under-onstrained systems, the main piee of work is that of Joan-Arinyo et al. [21, 23℄. First of all, they suggest that the main problems forsolving under-onstrained geometri onstraint systems (GCS) are three: om-pletion (add onstraints in suh a way that the new GCS an be solved bygeometri onstrutions), well-onstrained ompletion (add onstraints to anunder-onstrained GCS so that it beomes well-onstrained), and optimal well-onstrained ompletion (add onstraints so that the new GCS is well-onstrainedand the set of equations to solve simultaneously is of minimal size). Seond,they propose an algorithm to address the �rst two problems, by inrementallyenrihing the onstraint graph with new onstraints. Among the di�erent pos-sible ompletions, one needs to �nd the one that will allow a given geometrisolver to solve the ompleted system. To do this, they use the tehnique of s-treedeomposition.Prior to the work of Joan-Arinyo et al., Fudos and Ho�mann [24℄ proposeda method alled luster formation method, whih addresses problems 1 and 3.Lee et al. [25℄ lassify under-onstrained sub-systems into simpli�ed ases andapply lassi�ation rules, both aspets being based on the graph of the GCS,in order to deal with under-onstrained systems. The work of Trombettoni etal. [26℄ introdues an algorithm based on an analysis of the degrees of freedom tosolve under-onstrained GCS. Zhang and Gao [27℄ proposed a method to addressthe well-onstrained ompletion problem whih an then be used to deomposeunder-onstrained systems.This paper illustrates the interest of onsidering under-onstrained systemsnot as onstraint systems to be �xed, but rather as systems to be solved as is,in assoiation with tools able to browse the solution spae, or as intermediarysystems in a solving proess. It is organized as follows. Setion 2 reall somefundamental de�nitions and fats of geometri onstraint solving. In partiularits �original sin� whih lies in the invariane under the ation of the isome-tries, makes under-onstrained the majority of onstraint systems enounteredin CAD. Setion 3 desribes a way to represent and to handle artiulated sys-tems. Setion 4 explains how the onsideration of under-onstrained systems ob-tained by relaxing some onstraints may help in solving well-onstrained system.We present here two examples: a deomposition method based on the ompu-tation of maximal rigid sub-system (here, rigid means well-onstrained modulo



the isometries), and a method so-alled quasi-deomposition whih mixes formaland numerial resolution.2 Invariane under a global groupIn this setion, we formalize invariane under the ation of transformation groupsand show the interest of the multi-group point of view in the ontext of geometrionstraint solving.2.1 Geometri onstraint systemsWe use the formalism of geometri onstraint systems used in [28℄. We brie�yreall here the main notions.A Geometri Constraint System (GCS) is a tuple S = (C, X, A) with C theset of onstraints, X the set of unknowns and A the set of parameters. Given avaluation ρ of the parameters, a �gure of S is a valuation of the elements of X(i.e. a map from X to the onsidered model, generally the Eulidean plane E2or the Eulidean spae E3) suh that the interpretation of the onstraints of Cis valid. The set of all �gures of S aording to ρ is denoted by Fρ(S), simply
F (S) when values of parameters are not important or F when no onfusionour. Then, S is well-onstrained is F (S) is �nite, under-onstrained if F (S) isin�nite.The joint operation is the semantial ounterpart of system deomposition.Under some ompatibility onditions, two �gures an be joined. The joint of f1,de�ned on X1, and f2, de�ned on X2, is the �gure f1 ⊗ f2 whih maps x to
f1(x) if x ∈ X1 or to f2(x) if x ∈ X2. The ompatibility onditions are that forany x ∈ X1 ∩ X2, f1(x) = f2(x). The joint operation an be extended to jointof �gure sets by onsidering that F1 ⊗ F2 is the set of all �gures obtained bythe joint of two ompatibles �gures f1 and f2, respetively in F1 and F2. Fig 2shows the joint of two �gure sets (the dotted line expresses symmetry in the toptriangle).The notion of boundary system plays a large part in deomposition of sub-systems. A boundary system of a system S1, subsystem of S = S1 +S2, ontainsall the information needed to retrieve the solutions of S2 whih are sub�gures of
F (S). We denote by F (S)|X2

the sub�gures of F (S) restrited to the unknownsset X2.The de�nition of boundary systems is semantial: let S = S1 + S2 be asystem with S1 = (C1, X1, A1) and S2 = (C2, X2, A2). A boundary system of S1with respet to system S2 is a system that we note BS2
(S1) = (Ce, Xe, Ae) with

Xe = X1 ∩ X2, Ae = A1 ∩ A2 and Ce suh that F (BS2
(S1)) = F (S1)|(X1∩X2).Usually, Ce is omputed by heuristis within a spei� geometri universe. Again,to larify notations, when there is no ambiguity as to the system with respet towhih the boundary system is omputed, it is denoted simply by B(S). Notiethat there may be several di�erent boundary systems, but they are all equivalentto eah other.



It an be shown [28, result 2.3℄ that removing a subsystem S1 from system Sdoes not hange the solutions of the remaining system if a boundary system of
S1 is added. In other terms, it proves the validity of bottom-up deompositionmethods: if the subsystem solvers are orret (i.e. yield only �gures that satisfythe onstraints) then the joint of the sub�gures will yield valid solutions.Let us illustrate this result on the example of Fig. 2: X2 is the set {P3, P4, P5}and F (S2) ontains all triangles whose two segments are of the same length andangle between them is �xed to parameter a. We an see that F (S)|X2

is thesubset of F (S2) where distane P3P5 of triangles is k1. F (S2) arries trianglesthat are not involved in any solutions.The set X1 is {P1, P2, P3, P5}. Boundary variables are Xe = X1 ∩ X2 =
{P3, P5} and F (B(S1)) ontains all segments in Eulidean plane where length is
k1. Considering a lassial signature, this set an be syntatially expressed bythe system B(S1) = ({dist_pp(P3, P5, k1)}, {P3, P5}, {k1}).Thus, S2 + B(S1) restrits S2 to triangles where the distane of the segmentopposite angle P̂3P4P5 is k1. Notie that F (B(S2)) is just all possible segmentssine boundary variables of S2 are {P3, P5} and the distane between these twopoints is not set. Here, the relation is F (S)|X1

= F (B(S2)+S1) but the boundarysystem B(S2) does not bring relevant informations sine F (S)|X1
= F (S1). Thatmeans that removing S2 from S does not impat on X1.
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Fig. 2. Joint of two sub�gures
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Fig. 3. Orbits of system S onsidering dif-ferent transformations groups2.2 Transformation groupsA set of �gures F is invariant by a group of transformations G (or G-invariant)if for any �gure f ∈ F and any transformation ϕ ∈ G, ϕ(f) ∈ F . By extension,a onstraint system S is said to be G-invariant if F (S) is so. For a group G



and a �gure f ∈ F , the set G.f = {f ′ | ∃ϕ ∈ G, ϕ(f) = f ′} is the orbit of
f . The set of orbits of F under the ation of G form a partition of F . Theassoiated equivalene relation states that f and f ′ are equivalent if there existsa transformation ϕ ∈ G suh that f = ϕ(f ′). The orbits are the equivalenelasses of this relation. The set of all orbits of F under the ation of G is writtenas F/G and |F/G| denotes the number of orbits.Fig. 3a shows the very simple onstraint system of a triangle where lengthof all three sides are given. Given values for parameters k1, k2 and k3, Fig. 3b,3 and 3d represent the solution set F (S) with di�erent equivalene lassesaording to the transformations group onsidered. In Fig. 3b transformationsare translations, thus number of orbits is in�nite. In Fig. 3 transformations arediret isometries or rigid motions, so |F (S)/G| = 2. In the last ase, Fig. 3d,there is only one orbit, all solutions are equivalent modulo isometries.When a onstraint system is G-invariant, F (S) an be haraterized by aset of orbit representatives Fr ontaining one �gure per orbit. In other words,
F (S) = G.Fr. In the previous example, the set of solutions an be de�ned by
F (S) = G.Fr with G the group of rigid motions and Fr a set ontaining two�gures, one from eah orbit of F (S)/G.Those de�nitions allows to de�ne modulo onstrainedness, aording to thenumber of orbits of the system for a given group: a geometri onstraint system
S is said� under-onstrained modulo G if |F (S)/G| is in�nite,� well-onstrainedmodulo G (orG-well-onstrained,G-w in short) if |F (S)/G|is positive and �nite,� over-onstrained if S has no solutions.Thus, when G is in�nite, a G-well-onstrained system is almost always under-onstrained sine it has an in�nite number of solutions in eah orbit. Yet, sinethe position (or the sale, or the orientation) are often irrelevant for the designer,one an all this phenomenon under-onstrainedness by abstration.A key notion when it omes to modulo onstrainedness is that of referene.A referene for a system is a set of entities (or oordinates of entities) suhthat pinning down eah element of the referene leaves only a �nite number ofsolutions. For instane, a referene for a rigid triangle de�ned by the lengths ofits distanes ould be a point and a diretion from this point to another point.Atually, a point and a diretion are a referene for any rigid system and onean similarly de�ne possible referene types for every global group [28℄. In thease of an artiulated system, a referene anhors eah rigid subsystem.Given a transformation group G and a G-well-onstrained system S, let usonsider a deomposition of S under the form S = S1 + S2. S1 and S2 are both
G-well-onstrained if and only if they share a referene. In other words, in theusual ases either S1 or S2 is G-under-onstrained and the use of a boundarysystem, whih has to be G-well-onstrained, is mandatory.As said above, the joint operation is very useful for deomposition methods.Considering transformation groups, the de�nition of the joint operation an be



extended. Two �gures f1 and f2 an be G-joined if there exist two transforma-tions ϕ1 and ϕ2 in G suh that ϕ1(f1) and ϕ2(f2) an be joined. The G-joint of
f1 and f2, noted f1 ⊗G f2, is the set of all ϕ1(f1) ⊗ ϕ2(f2).Notie that a system an be invariant under the ation of several groups.For instane, if a system is invariant by displaement, it is also invariant bytranslation and by rotation. More generally, one an onsider a bounded posetof groups and then show that invariane under the ation of a given group impliesinvariane under the ation of every inluded group. The biggest invariane group(in terms of inlusion) of a system is its well-onstrainedness group.2.3 Interest of modulo onstrainednessThere always exists a group G suh that S is G-w: the group of permutationsof the solution set. Of ourse, expressing this group means knowing all solutionsof S, so this is not useful to solve or deompose. The interesting knowledge isthat of the well-onstrainedness of a system (or of subsystems) modulo globalgroups, i.e. groups of transformation applying the same transformation on eahentity of the (sub)system.Classial solvers onsider only GCS whih are invariant by displaements, i.e.applying a rigid motion to a solution yields another solution. We believe thatthis assumption weakens geometri onstraint solvers.Indeed, onsidering subsystem whih are invariant under other transforma-tion groups leads to more powerful deomposition algorithms. Shramm andShrek [29℄ solve subsystems whih are invariant under the ations of similar-ities (rigid motions + salings). From this possibiliy, Shrek and Mathis [30℄dedue a deomposition algorithm whih is able to solve geometri onstraintsystems whih were not onsidered as deomposable before. Similarly, van derMeiden and Bronsvoort [31℄ extend lassial luster rewriting approahes byonsidering, on top of rigid lusters, two types of non-rigid lusters: salablelusters (i.e. sub-systems well-onstrained modulo similarity, as in [30℄) and ra-dial lusters (i.e. assemblies of sub-systems whih are well-onstrained modulosimilarities but form a luster whih is invariant under the ation of similaritybut not well-onstrained modulo similarities).Moreover, it is important to realize that the user's intent is not always todesign a displaement-invariant objet. On one hand, the objet may be arti-ulated. Artiles desribing methods allowing to solve artiulated GCS are notmany and admit the weakness of their resolution power, whether they proeedby analysis of the degrees of freedom of rigid objet assemblies [32, 33℄ or bydeomposition into rigid sub-systems [34℄. On the seond hand, the objet mayalso not be invariant by some rotations. For instane, skethes drawn in the on-text of arhitetural design represent objets whih are invariant by translationbut annot rotate around x or y axes. Notie that very often, these systems orsubsystems an be saled, when the arhitet knows the relative distanes butdoes not yet provide a �xed measure.



3 Artiulated systemsIn this subsetion, we propose a method to parameterize an artiulated GCS,i.e. to �nd a referene for suh a system. We do not address the ompletionproblems exposed in [21℄ sine we do not add onstraints to the system andmerely expliit whih geometri entities should be anhored for the system tohave a �nite number of solutions. By proeeding this way, we get a homogeneousparameterization method, whih an handle a rigid system as well as an artiu-lated system: in the �rst ase, our method will selet a point and a diretion tobe pinned down, for instane.In this subsetion, we onsider geometri onstraint systems whih are under-onstrained modulo any global transformation group, i.e. it is not possible toyield a transformation group whih ats likewise on the whole system and forwhih the number of orbits is �nite. Eventhough they are under-onstrained,many suh systems de�ne �nal objets as they are intended by the user. This isthe ase of all artiulated objets: a pair of sissors, a desklamp, a ar or anyroboti system.In order to solve these systems, three steps are needed:1. �nd a parameterization of the GCS, i.e. a referene,2. determine the possible values of the parameters,3. draw the solutions for given values of the parameters.We fous here on step 1 and use work desribed in the literature [17, 18℄for the other two steps. We present an inremental algorithm to ompute aparameterization of a GCS S = (C, X, A). The idea of this algorithm is toonsume onstraints one by one and onsider a generi referene for the systemindued by the new onstraint. This generi referene is modi�ed aording towhat the system shares with the system generated by the previously onsumedonstraints.3.1 Parameterization algorithmThe referene is omputed under the form of a direted ayli graph (DAG).The orientation of the DAG indiates whih parts of the order in whih thedi�erent parts of the referene must be anhored. When there are several dis-onneted subsytems, we onsider several DAGs. Together with the DAGs omethe onstrution rules whih indiate how to build entities of the system withparts of the referene as arguments.Algorith 1 gives the general proess of the algorithm. At eah iteration, a newonstraint c is taken into aount, whih will be added to the already onstrutedsystem S′, initially empty. During the addition of c, we start by omputing thesystem indued by c, Sc and the boundary system B of Sc with regard to S′.Several ases our:1. B is empty,2. B ontains only geometri entities



3. B ontains onstraints onerning geometri entities from disonneted sub-systems4. B ontains onstraints onerning several geometri entities from a subsys-tem
Algorithm 1 Inremental parameterization algorithminput: S = (C, X, A), a geometri onstraint systemoutput: R, a referene for S (DAG)1: let S ′ = be an empty GCS and R an empty DAG2: for all c ∈ C do3: let Sc be the GCS indued by c and rc its referene4: let B = (CB, XB , AB) be the boundary of Sc with regard to S ′5: if B is empty then6: R← R + rc //ase 17: else if CB is empty then8: R← R + (rc −XB) //ase 29: else10: if no two entities of XB belong to a same onneted omponent of theonstraint graph of S ′ then11: remove the referene of all onerned onneted omponents exept one//ase 312: add part of rc as in ase 213: add eah previously removed referene as in ase 214: else15: ompute the boundary system of the onneted omponent ontainingseveral entities onerned by c //ase 416: if it ontains the same onstraint then17: if the metri is the same, then the onstraint is redundant, else itoveronstrains the system endif18: else19: attempt to detet rigidi�ation and to orret R using geometrionstrution rules20: end if21: end if22: end if23: if c was deteted as over-onstraining or redundant then24: output an error/warning message25: else26: S ′ ← S ′ + Sc27: end if28: end for



Case 1 : empty boundaryIf the boundary is empty, it means the geometri entities onerned by the newonstraint do not yet appear in S′: a new onneted omponent is reated byadding Sc and rc an be added as is.Case 2 : only entities in the boundaryIf the boundary ontains only entities, it means the new onstraint only partiallyonerns entities of S′ and the already omputed referene R does not needmodi�ations. rc is omputed and we remove from it entities whih are in theboundary, already given by S′. For instane, if the new onstraint is a point-point distane, rc onsists in one point and one/two diretions, aording to thedimension of the geometri universe. If one of these points is already in S′, thenonly the diretions are added to R.Case 3 : the boundary ontains a onstraint between disonnetedsubsystemsIf B ontains the added onstraint but the onerned entities are not in the sameonneted omponent of the onstraint graph, it means that the new onstraintslinks two independent subsystems S1 and S2 (or more in ase of non-binaryonstraints but for the sake of larity, we here onsider there are only two sub-systems). In this as, we �rst add Sc to one of these systems, say S1 (the hoieis made through a heuristi, ours being to hoose the system with the biggestreferene), thus omputing the addition to the referene as in ase 2.Then, we �reverse� the referene DAG of S2 so that its base parameter is theentity onerned by c. Conneting this DAG is then easy as one simply removesthe base parameter to make both DAG ompatible.Reversing the DAG is performed by onsidering a temporary DAG, initiallyempty, and by �adding� the boundaries of eah rigid subsystem in the right order.Case 4 : the boundary ontains a onstraint between two entities ofa same subsystemThis ase ours either when a losed hain is reated or when a redundantonstraint is added. The latter is deteted by omputing the boundary of S′with regard to Sc. If it also ontains c we detet a redundany (if the metrisare onsistent) or an over-onstrainedness.If the onstraint is not redundant, we onsider lassial onstrution rules toorret the DAG. These lassial onstrution rules are, for instane �if a pointis onerned by two/three distane onstraints in 2D/3D, it an be onstrutedby intersetion of the orresponding irles/spheres�. These rules allow us toremove elements from the referene DAG when needed. For instane, onsidera three-bars artiulated objet and the addition of a onstraint losing it. Oneof the extremities of the three-bars objet will be onsidered as built using a



onstrution rule, thus removing the part of the referene that previously allowedits onstrution. The new DAG ontains a point and two diretions, so as to buildtwo of the bars. The rest of the system depends entirely on these bars.The rigidi�ation of a subsystem an be deteted: when the parameters of aonstrution rule are all in the same rigid subsystem, the onstruted elementsextend this rigid subsystem.It may happen that no onstrution rule an be found. For instane, on-sider one of the K3,3 systems of �gure 4: until the last onstraint is added, ouralgorithm works �ne. The last onstraint rigidi�es the system but we annotdetet it sine no geometri rule applies. In this partiular ase, we onsiderthe orresponding subsystem as rigid eventhough we annot yield a onstrutionplan and use a reparameterization method (see setion 4.3) for whih we alreadyknow the onstraint to remove.3.2 Limits of this algorithmAn important limit of this algorithm lies in the fat that some rigid systems areonly identi�ed through the heuristi onsisting in onsidering that a system with4 degrees of freedom beomes rigid if we add a new non redundant onstraint.Mathematial theorems ould trik the algorithm.Algorithm 1 yields only one referene for a given system. This spei� refer-ene may not be the one the user wants and we do not yet have a way to providea referene with several mandatory elements in it: only the base parameter anbe hosen, by using the reversal method. Even then, the ost of this reversal isheavy, sine it onsists in adding the boundaries of eah rigid subsystem, thusrestarting the onstrution of non-rigid losed hains from srath. Also, this al-gorithm onsiders assemblies of rigid subsystems, and annot take into aountsubsystems whih are well-onstrained modulo other groups than the rigid mo-tions. A promising trak for these drawbaks lies in �ow-based methods [35℄, butthere is a risk that their use only makes worse the problems of the ombinatorialheuristi mentioned above, espeially for the detetion of over-onstrainedness.Another trak is a parallel use of the witness method [36�38℄.4 Deomposition and under-onstrainednessDeomposing onstraint systems into sub-system is an avatar of the �divide andonquer� paradigm whih leads to several methods whose goal is to make thegeometri solvers more powerful. For instane, we an ite ylindrial deom-position, Gröbner bases omputation, König-Hall deomposition, maximal �owbased methods, deomposition into trionneted omponents, geometri knowl-edge based systems, lusters, et.As mentioned above, under-onstrainedness is often a onsequene of thedeomposition proess when its deal with invariane under the ation of a globalgroup (onsider, for instane, the notion of virtual bond used into the Owendeomposition). We will see in the next setions, two example of methods whereunder-onstrainedness is part of the deomposition proess itself.



4.1 Deomposition and solvingLet us reall more preisely what onstraint systems deomposition means: givena onstraint system S, searh a system S′ suh that :� S′ is semantially equivalent to S,� S′ is the union of two or more simpler systems
• whih are well-onstrained modulo some global group,
• and not redued to their boundary,� solving S′ by using a joint operation is easier, and yields the solutions for SThe more powerful deomposition methods ome from the algebrai elimina-tion theory [39℄. Indeed given an algebrai system, they are able to yield one orseveral algebrai systems under triangular form. After that, eah equation has tobe solved using algebrai method, like Lebesgue's method, or numerial method.But the exponential omplexity of algebrai formal method disqualify them forproblems of pratial use.This is why, in CAD, ombinatorial methods are onsidered. We give herethe example of the so-alled propagation of degrees of freedom (DOF propaga-tion) whih is perhaps the more basi deomposition method. Starting from areferene, the method tries to iteratively add to the system S1 an unknown xand onstraints de�ning x until S1 is equal to S. More preisely, this methodtranslates a onstraint system S into a onstraint hyper-graph H = (V, E) wherethe vertexes orrespond to the unknowns labeled by their degree of freedom,roughly speaking their number of oordinates, and the hyper-edges orrespondto the onstraints labeled by their degree of restrition roughly speaking thenumber of real equations subtended by the onstraint. The forward hainingversion of the method an be summarized by algorithm 2. At the end of thisproess, S1 orresponds to a subsystem whih is struturally well-onstrained,and L desribes a way to deompose S1. The algorithm is said suessful when

S = S1. This method yields a simple planing method where the unknowns aretaking into aount one after the other.This DOF propagation method is based on a loal appliation of the Lamanpriniple and �nd a well-onstrained subsystem S′ of S. This subsystem is max-imal aording to this method. Unfortunately, DOF propagation is not powerful,even in 2D. Indeed, sometimes S′ is redued to a single onstraint regardless thehosen referene and the method fails to perform an interesting deomposition(see, for instane, the K3,3 problem above). Moreover, like most of the ombi-natorial solvers, this method is triked by dependenes indued by geometrialtheorems. for instane, it is unable to detet that a triangle onstrained by threeangle onstraints is over-onstrained.The W-deomposition method is also based on the omputation of a maxi-mal subsystem well-onstrained modulo the displaements. Based on the witnessnotion (see ...), it is not triked by unwanted dependenes, and it is muh morepowerful than ombinatorial methods in omputing well-onstrained subsystems.



Algorithm 2 Simple DOF propagation int he ase of all geometri entities haveDOF 2, and eah edge represents a onstraint with DOC 1input: G, the onstraint (hyper)-)graph orresponding to Soutput: L an ordered list of vertexes of G1: L is the list of the visited vertexes,2: S1 is the list of the visited edges3: L = hoose vertexes of G orresponding to a referene4: S1 = the onstraints joining the hosen vertexes5: repeat6: hoose edges {e1, . . . em} orresponding to {c1, . . . cm}, suh that- they are not in S1,- they have all the same unknow x as extremity,- they other extremities are in L,- dof(x) = Σidor(ci)7: if suh edges exist then8: add x to L and,9: add {e1, . . . em} to S110: end if11: until no more edges an be hosen4.2 W-deompositionThe idea of applying the notion of witness in GCS to CAD/CAM problemsomes from D. Mihelui. It was explained in several plaes, inluding the 2006ADG workshop [37℄.Considering a witness allows to �nd a maximal rigid sub-system (MRS) ofa onstraint system (see [36, 37℄). Applying this method to a rigid onstraintsystem S yields whole system S, but onsidering an underonstrained subsys-tem of S, some rigid parts of S an be retrieved: the W-deomposition is adeomposition method based on this fat.The basi idea of W-deomposition is then to remove onstraints from S,giving system S′, and see if S′ an be broken into non-trivial MRSs, i.e. MRSswhih are not limited to their boundary. If it does, then we use W-deompositionon eah non-trivial MRS. Algorithm 3 gives the pseudo-ode of the algorithm.E�ieny of the exeution depends on the hoie of the removed onstraint.In the worst ase, all onstraints are tested: 2×n−3 uses of the MRS algorithmare made, thus the omplexity is O(n4).It must be notied that W-deomposition does not fail beause of the on-netivity of the onstraint graph: For instane, Fig. 5a gives an example of a4-onneted onstraint graph whih is W-deomposable, no matter what is in-side the inner blue part as long as it is rigid. Moreover, W-deomposition is notbased on a bottom-up omputation, like methods with lusters, and sueeds indeomposing the systems orreponding to the graphs of Fig. 4 and Fig. 5b whihare not deomposable by lassial ombinatorial methods.W-deomposition is a mixture of ombinatorial and numerial random meth-ods. It is obviously not as powerful than algebrai methods, for instane it fails



Algorithm 3 W-deompositionInput: a rigid GCS S withits onstraint graph G = (V, E) anda witness W of SOutput: a list of rigid subsystems1: repeat2: Delete a onstraint e3: Identify MRSs of (V, E/{e}) using a witness4: while eah MRS is equivalent to its boundary do5: Choose another onstraint e and identify MRSs of (V, E/{e})6: end while7: until all onstraints are tested or there is a MRS whih is not equivalent to itsboundary8: if no MRS bigger than its boundary is found then9: return list [G℄ //G is W-indeomposable10: else11: remove all the onstraints inluded in non-trivial MRSs12: insert the boundary of all non-trivial MRSs in the system13: reintrodue onstraint e in the system//this gives a rigid onstraint system14: reursively W-deompose the resulting system15: reursively W-deompose all previously identi�ed MRSs16: return the onatenation of the lists obtained in the last two lines17: end if
PSfrag replaements

e1

e2 ab Fig. 4. 2D systems where edges representpoint-point distanes; a: 3-onneted on-straint graph made of two K3,3 graphs on-neted with 3 onstraints; b and : graphsobtained by replaing MRSs identi�ed byalgorithm 3 by their boundary with respe-tively edges e1 and e2 removed.
PSfrag replaements a bFig. 5. 2D examples for the W-deomposition: eah vertex is a pointand eah edge represents a distane on-straint. a: W-deomposable 4-onnetedGCS (the blue subsystem is rigid); b:W-indeomposable system; : there areW-indeomposable systems with anarbitrary number of points.



in deomposing all the systems depited in Fig. 5. But, we feel that it owns oneof the best ratio deopmposition power/e�ieny for onstraint systems omingfrom CAD.4.3 Quasi-deompositionWe now outline a work about deomposition whih was already presented at anADG workshop and published in [40, 41℄. This method use an under-onstrainedsystem whih is built on the �y and is onsidered in some sense as an artiulatedsystem whose some solutions are browsed through a numerial method. Roughlyspeaking, the idea beyond the �rst step of the method onsists in examiningwhy the deomposition method fails, and, in relaxing some onstraints to makeit sueed.It is useful to ome bak to the DOF propagation and to notie that the failureof the method does not neessarily implies that system S is miss-onstrained.More preisely, assuming that system S1 is well-onstrained, the ase dof(x) <
Σidor(ci) (whih makes fail the algorithm 2 at line 6, fourth item) implies thatthe whole system S is over-onstrained: in other words, there is a bug in thedesigner spei�ation. But the method ould as well fail, even if system S iswell-onstrained, if for all unknowns x not in S1, dof(x) > Σidor(ci): onsiderfor instane the K3,3 graph given at Fig. 4.Then, reall that deomposition of system S implies to ompute a system
S′ semantially equivalent to S and under the form of the union of smallersubsystems. Relaxing the equivalene ondition between S and S′ leads to a more�exible sheme whih we all quasi-deomposition: given a onstraint system S,searh for a system S′ suh that :� S and S′ do not neessarily have the same solutions but are �similar" insome sense� S′ is deomposable,� there is a way to transform any solution for S′ into a solution for S and onehopes that any solution for S an be obtained like that.This sheme was used by the adaptation of the homotopy method to CADproblems (see [42℄). But it was also used, in a di�erent way, by Gao et al. inthe ase where S is �quasi" deomposable with respet to the DOF propagationmethod.Exploiting the deomposition failures to modify a system Whatever thedeomposition method used, when an irreduible onstraint system S is onsid-ered, some room for man÷uvre an be obtained by forgetting some onstraints of
S, what gives an under-onstrained system, say S1. Making S1 well-onstrainedwhile keeping �exibility an be done in two ways: transforming some unknownsinto parameters [43℄, or adding onstraints with parameters [44℄. Obviously, thelatter way is more general sine transforming unknown x into parameter µ re-sults in adding equation x = µ. In this ase, parameterized onstraints are added



to the system, and we an make their parameters vary in ompensation of themissing onstraints.More formally, we have the following sheme (for the sake of simpliity, weonsider the replaement of a single onstraint):
S = (















c1(x1, . . . , xp)
. . .
cm−1(x1 . . . , xp)
cm(x1 . . . , xp)

; {x1, . . . , xp}; ∅)gives system S1 by forgetting, for instane, cm:
S1 = (







c1(x1, . . . , xp)
. . .
cm−1(x1 . . . , xp)

; {x1, . . . , xp}; ∅)whih gives by adding onstraint d with parameter k:
S′ = (















c1(x1, . . . , xp)
. . .
cm−1(x1 . . . , xp)
d(x1, . . . xp; k)

; {x1, . . . , xp}; {k})or, in short, S′ = S − cm(x1, . . . xp +d(x1, . . . xp; k). The addition of one or moreparameters imposes S′ to be formally solved and the question arises of hoosingthe onstraints to be forgotten suh that S′ is formally solvable.The answer of this question is strongly related to the nature of the formalsolver used. For instane, in [44℄, the authors assume that their formal solver ansolve any geometri onstrution problem with one unknown objet and then,they use a systemati searh of the onstraints to be eliminated. This ensuresthat the remaining system is solvable and a minimal number of onstraints isdisarded. But this brute fore algorithm is not usable anymore when there aremore than two onstraints to remove and when the solver is not able to formallysolve any onstrution problem with one unknown.The bakward haining onsists in hoosing the less onstrained objet of thesystem, all it xi0 : an heuristi hoie is made in the ase where there are severalsuh objets. We all the neighborhood of xi0 the set of all onstraints involving
xi0 and we note it N(xi0 ). Assuming that all the other objets are known, theformal solver is employed to onstrut xi0 by using onstraints in N(xi0):� if the solver fails to determine xi0 then

• try another few onstrained objet,
• if the solver fails in any ase, then try to add some heuristially hosenparametri onstraints dj ;� if the solver sueeds to formally determine xi0 from its neighbors, two asesan our:
• if all onstraints of N(xi0 ) are used, the haining proess an ontinue
• if some onstraints of N(xi0), say c′l, are not used, then keep them apart.



Algorithm 4 The algorithm applying one step of a �one step� transationalexpert systeminput : B, base of unused onstraintsSe, a transational expert systemS1, the onstraint system to be analyzedoutput : ok, a booleanB, the modi�ed base of onstraintsS1, the modi�ed onstraint system1: l = extrat_obj_dof(B) // unknowns list2: ok = false3: (ontinue,o,r,B+,B-) = try(B, Se, S1)4: // try to apply a rule removing r degrees of5: // freedom from o, adding fats in B+ and6: // removing fats in B- (B is unhanged)7: while ontinue do8: x = urrent_DOF(o,l)9: if x+r > dof(o) then10: ontinue = false11: store all the supernumerary onstraints12: else13: if x+r = dof(o) then14: B = update(B,B+,B-)15: ontinue = false, ok = true16: S1 = update_sys(S1, B)17: else18: l = update_list(l, (o,x+r))19: B = update(B,B+,B-)// try another rule/objet20: (ontinue,o,r,B+,B-) = try(B,Se,S1)21: end if22: end if23: end while24: done25: return (ok, B, S1)



The system S′ to be onsidered is S −
∑

l c′l +
∑

j dj (see Alg. 4)Conversely, the forward haining strategy onsists in letting the knowledgebased solver at on the onstraint system. When the solver fails to determineone unknown beause some onstraints are missing, then it tries to add someparametri onstraints dj in order to ontinue. At the end, when all the unknownsare solved, there are some onstraints c′l whih have not been used sine system
S was well-onstrained: these onstraints must be forgotten. One again, thesystem S′ to be onsidered is S −

∑

l c
′

l +
∑

j dj .This way, the resolvability of S′ by the formal solver is ensured. In priniple,as many onstraints were removed as ones were added (more preisely, we shouldonsider the degree of restrition of the onstraints): we all syntati distanebetween S and S′ the number of removed onstraints. The heuristis used in theprevious strategies aim at minimizing this distane, that is, at modifying S aslittle as possible.Solving Let d be the syntati distane between S and S′. S′ is a parametrionstraint system with d parameters k1, . . . kd and p unknowns x1, . . . xp. Sine
S′ is formally solvable in our framework, we an use its solutions whih arefuntions fi : (k1, . . . kd) 7→ xi(k1, . . . kd) where i = 1, . . . p.In addition, S and S′ di�er by d onstraints. More preisely, most solutionsof S′ do not satisfy the removed onstraints c′1, . . . c

′

d. But, we an searh forvalues for the parameters ki whih satisfy these onstraints. In fat, we just haveto solve the system S2:






c′1(f1(k1, . . . kd), . . . , fp(k1, . . . kd))
. . .
c′d(f1(k1, . . . kd), . . . , fp(k1, . . . kd))

, {k1, . . . kd}, ∅whose unknowns are {k1, . . . kd} and without parameters. Thus, S2 an be solvednumerially. It is then lear that if (v1, . . . vd) is a solution for S2, then
(f1(v1, . . . vd), . . . fp(v1, . . . vd))is a solution for S. On ertain onditions about the added onstraints dj , it anbe proved that if S1 is well-onstrained, all the solutions an be obtained thisway if both solvers are omplete.Some di�ulties arise when a numerial solver is used to solve system S2 butit is beyond the sope of this paper. Interested readers may refer to [41℄.5 ConlusionWe explained in this paper why under-onstrained systems are useful in CAD:they naturally appear when onstraint systems are invariant modulo an in�nitegroup of transformations, but they also are an ingredient of some deompositionmethods.
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