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form. Formally, a geometri onstraint system (GCS) onsists of a 3-tuple
(C, X, A) with C a set of onstraints (prediates) on a set X of unknowns(geometri elements) with respet to a set A of parameters (metri values). So-lutions are returned as the oordinates of the geometri elements, i.e. a set offuntions f : X → Ri in i dimensions. For more formal de�nitions of geometrionstraint systems, the reader may refer to [29℄.Example : Geometri onstraint systemFigure 1 shows a lassial example of a geometri onstraint system. Wegive a formal statement of the system and a sketh as the user woulddraw it. The right of the �gure shows a possible solution. Many othersolutions exist:

• if a symmetry is applied on a solution, it yields another solution;
• if a rotation and/or a translation is applied on a solution, it yieldsanother solution;
• if a symmetry is applied for instane on point p3, with axis p2p4, ityields another solution.

dist(p1, p2, k1), ang_ppp(p6, p1, p2, θ1),
dist(p2, p3, k2), ang_ppp(p2, p3, p4, θ2),
dist(p3, p4, k3), ang_ppp(p4, p5, p6, θ3),
dist(p4, p5, k4), dist(p5, p6, k5),
dist(p1, p6, k6), with k1 = 7, k2 = 5,
k3 = 9, k4 = 8, k5 = 6, k6 = 7, θ1 = 135,
θ2 = 120, θ3 = 115
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7 59867 135◦ 120◦115◦Figure 1: Formal statement (left) of a 2D tehnial sketh (middle) and a possible solution(right).The literature desribes a number of di�erent approahes to solve geometrionstraint systems:
• algebrai methods onsist in translating the GCS into a set of equationsand working on the equation system, thus forgetting the geometrial bak-ground. Algebrai methods an be lassi�ed in numerial methods (iter-ative omputations onverging to an approximate solution from initialvalues given by the user, suh as the Newton-Raphson or the ontinuationmethod [27℄) and symboli methods (diret omputations on the equations� those methods are seldom used beause of their time omplexity [1℄),
• geometri methods use the geometri knowledge to solve the system: rule-based methods [2, 19℄ dedue onstrution plans by an expliit use ofgeometri rules, graph-based methods [7, 10, 27, 33, 34, 38℄ ompile thisknowledge into algorithms whih onsider only ombinatorial and onne-tivity riteria, 2



• hybrid methods [5, 9, 20℄ alternate algebrai and geometri phases of om-putations to use the power of both approahes.For more details on geometri onstraint solvers, see [13℄. A general trend,both to redue omplexity and to enhane resolution power, onsists in de-omposing the GCS into solvable subsystems and in assembling their solu-tions [5, 10, 14, 17, 27, 33, 34, 38, 42℄.Example : Deomposition of geometri onstraint systemsIt is impossible to draw diretly a solution of the 2D example of Figure 1with only a ruler and a ompass. But it is easy to separately solve eah�triangle� (p1p2p6, p2p3p4 and p4p5p6) and then assemble them. By usingdeomposition, the resolution power is thus greater.Notie that, on the example of Figure 1, if one removes one of the trian-gles, say p2p3p4, and then tries to solve the remaining system, one needsto add information from the solved subsystem, i.e. a distane onstraintbetween p2 and p4, otherwise the remaining system beomes artiulated.For a detailed survey of deomposition methods, see [18℄. The piee ofinformation added when removing a subsystem is alled a boundary [29℄. Al-though several methods exist to �nd the relevant information in spei� resolu-tion frameworks [33℄, no general algorithm yet exists to ompute the boundarywithout adding too muh information.Indeed, it is important for resolution methods, espeially for graph-basedmethods, that the system does not have too few or too many onstraints.Loosely speaking, a system is alled
• under-onstrained if it has an in�nite number of solutions beause thereare not enough onstraints to pin down every geometri element,
• over-onstrained if it has no solution beause of onstraint ontraditions1,
• well-onstrained if it has a �nite positive number of solutions.Invariane of rigid systems by diret isometries is generally taken into aountby anhoring a point and a diretion in 2D, a point and two diretions in 3D.The point and the diretion are alled a referene for the diret isometries andonstitute what we all an anhor of the system. Other transformation groupsmay be onsidered [37, 42℄: we say that a system is G-well-onstrained if it iswell-onstrained modulo G [29℄.1Notie that the de�nitions of the levels of onstrainedness are general and do not take intoaount the generiity hypothesis, further disussed in setion 2. Thus, there exist systemswhih are said to be onsistently over-onstrained, when they are generially over-onstrainedbut the values of the parameters are suh that there are solutions.3



Example : Transformation groupsThe system of Figure 1 is rigid, or well-onstrained modulo diret isome-tries. The system of Figure 2a is well-onstrained modulo diret isome-tries, but ontains a subsystem, shown at Figure 2b, whih is well-onstrained modulo similarities [37℄: one an yield a �nite number ofsolutions from whih any solution an be generated by applying a sal-ing, a rotation and/or a translation.The system of Figure 2 is under-onstrained modulo any group atingglobally on the system: if one anhors points p1 and p2, for instane,points p3 and p4 may still move without violating onstraints.PSfrag replaements
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Figure 2: A rigid system (left) ; a subsystem well-onstrained modulo similarities (middle) ;an artiulated system (right)A lot of work has been done about the detetion of over-onstrainedness [15,17, 32℄ or under-onstrainedness [21, 41, 46℄ and more generally about the har-aterization of rigidity [22, 24, 37, 44℄. Yet, methods desribed in the literaturemay fail to onsider the onsequenes of mathematial theorems that are notexpliitly taken into aount in the onstrution of the resolution algorithm.Sine a theorem list annot be exhaustive2, it is impossible to develop a rule-based or graph-based algorithm whih detets all geometri properties induedby mathematial theorems.In this artile, we extend the witness method [30℄ to address several problemsited above: how to determine the onstrainedness level of a GCS without beingtriked by mathematial theorems (see for instane Figure 11); how to build awell-onstrained boundary system; how to hek if a potential anhor does notmake the system over-onstrained; how to e�iently detet all maximal well-onstrained subsystems of a given GCS; how to deompose a well-onstrainedsystem into the set of all its minimal well-onstrained subsystems.For oniseness reasons, in the rest of this paper, we onsider 2D systems,unless expliitly mentioned otherwise. Yet, all algorithms an be extended to3D systems with nearly no hanges.This artile is organized as follows: Setion 2 realls the priniples of thewitness method and gives a way to generate a witness; Setion 3 introdues an2More preisely, the set of theorems is reursively enumerable, but not reursive in general.4



inremental version of the Gauss-Jordan elimination method and demonstratesthat it leads to a orret greedy algorithm to ompute a well-onstrained bound-ary system; Setion 4 shows how to deide if a potential anhor is valid or not;Setion 5 gives algorithms to e�iently identify the maximal well-onstrainedsubsystems of an artiulated system (also alled �exible system); Setion 6 de-dues from these algorithms a method to further deompose a rigid system intowell-onstrained subsystems; Setion 7 disusses the robustness issues of ouralgorithms; �nally, Setion 8 onludes and gives perspetives to this work.2. The witness method2.1. PrinipleThe notion of witness appears in di�erent domains suh as the study ofpolynomial systems through the priniple of algebrai probability one [39℄,probabilisti proofs in geometry [6℄ or the Rigidity Theory [11℄.The idea onsists in studying generi properties of a ontinuous olletionof objets through the study of a single one of these objets: a witness. Sinethe rigidity is an important part of our onern, we reall here the basis of therigidity theory as desribed in [11℄.2.1.1. Frameworks and rigidityThe question of rigidity is studied through the notion of frameworks. Aframework is a triple (V, E, p) where (V, E) is a graph and p : V → Rd arealization of the graph, whih maps the verties of V to points of dimension d.Thinking of graph edges as rigid bars and of verties as artiulation points, themain goal of ombinatorial rigidity is to answer �Is (V, E, p) rigid?�, i.e. are rigidbody motions allowed only on the whole framework, with no loal deformation.An in�nitesimal �exion is then a map q : V → Rd suh that (p(i) − p(j)) ·
(q(i)− q(j)) = 0, for eah (i, j) ∈ E. A framework is alled in�nitesimally rigid,if the only in�nitesimal �exions arise from the diret isometries of Rd, i.e. thetranslations and rotations. It is proven that in�nitesimal rigidity is a strongerproperty than rigidity: a framework an be rigid but not in�nitesimally rigid,famous examples are given in Figure 3 (see [11℄). Counter-examples of rigid butnot in�nitesimally rigid frameworks arise when the framework is singular.

Figure 3: Non-in�nitesimally rigid frameworks. The framework on the left is rigid.A framework F = (V, E, p) is said generi if there is a neighborhood of Fwhere all frameworks with graph (V, E) are rigid if F is, and not rigid otherwise.5



A generi rigid framework is said generially rigid. Two main results in rigiditytheory are stated by the following proposition:Proposition 1. Consider a graph (V, E). If there is a realization p suh thatthe framework (V, E, p) is generially rigid, then the frameworks (V, E, q) where
q is another realization of the graph, is rigid for almost any q. On the otherhand, if two frameworks (V, E, p) and (V, E, q) are generi, then they are bothrigid or both not rigid.This proposition justi�es the fat that in 2D, the Laman theorem [24℄ givesa ombinatorial haraterization of rigidity. Alas, suh a haraterization is anopen problem in dimension 3 or higher.From the geometri onstraint point of view, a framework in rigidity the-ory orresponds to the realization of a geometri onstraint system where allonstraints are point-to-point distane onstraints: suh a system is generiallywell-onstrained up to diret isometries if it is generially rigid. This was gen-eralized by Mihelui et al. [30, 31℄ to metri onstraints over points, lines,et. (distanes and angles) and to inidene onstraints (olinearities in 2D and3D, oplanarities in 3D).2.1.2. Extension to CADIn the previous setion, we have realled the basis of rigidity theory and thepriniples of witness interrogation in this ontext. In the rest of this artile, wedo not have the point of view of rigidity theory and of frameworks, but fouson geometri onstraint system.As stated above, geometri onstraint systems in CAD naturally lead toonstraint graphs, or more generally to hypergraphs. It is then tempting toextrapolate results of the rigidity theory, suh as Laman's theorem, into the�eld of onstraint solving. In our ase, the onstraints are put in a graphialform on the sketh (see Figure 1) whih is a realization of the onstraint graphthe same way as in Rigidity Theory. Under some generiity assumptions, it is aperfet andidate to be a witness for the onstrainedness properties.Indeed when the designer draws a sketh, he/she has a solution Xw for anequation system F (X, Aw) = 0, with some parameter values Aw read on thesketh. Then the goal is a solution for the system F (X, Aa) = 0, where Aa arethe values given for the dimensioning. This fat has been used within the on-tinuation method with homotopy in CAD [3, 25℄ or to de�ne a neighborhoodrelationship between �gures [4℄. In fat, our purpose is lose to these prob-lematis sine we laim that the sketh is like the searhed solution from theonstrainedness point of view.In the CAD domain, all the geometri onstraints an be put under the formof polynomial equations, and F is a C∞ lass funtion. We an then onsider aTaylor expansion of system F (X, Aw) = 0, and get:

F (Xw + ε
−→
V , Aw) = F (Xw, Aw) + εF ′(Xw, Aw)

−→
V +O(ε2)6



where −→V an also be seen as the instant veloity of eah objet involved inthe system and ε is a small time step. Then, ε
−→
V is an in�nitesimal �exion, ormotion, if it leads from a solution to another solution of the system. Or, inother words, the O(ε2) term in the previous formula beomes in fat a o(ε2)term. Under these onditions, we must have

F ′(Xw, Aw)
−→
V = 0 (1)The spae of the in�nitesimal motions allowed by the onstraints at thewitness is then given by ker(F ′(Xw, Aw)). Note that

• the matrix F ′(Xw, Aw) is known as the Jaobian matrix of the funtion
F (X, Aw) taken at point Xw;
• when all onstraints are point-to-point distanes, the Jaobian matrix isthe rigidity matrix onsidered in Rigidity Theory;
• for other onstraints with parameters the generiity onditions are alikethose in the ombinatorial ase: a parameter valueAw and a orrespondingsolution Xw are generi if the root is an impliit funtion of the parametersin some open neighborhood of (Xw, Aw); for instane, for a triangle spe-i�ed with three length parameters, this ondition forbids that one lengthis the sum of the others; more generally this ondition implies that thematrix

(

∂F (X, A)/∂X ∂F (X, A)/∂A
0 Id

)has the same rank in an open neighborhood of (Xw, Aw). When all theequations are polynomials, beause of the algebrai probability one prini-ple, the generi parameter values are dense in the set of parameter valuesorresponding to a realization.Example : Generi formulation of onstraintsFor point, line, plane inidenes, we assume that the orresponding on-straints are spei�ed expliitly without parameters. This is to avoid ex-pressing point-point inidenes by a distane onstraint (p1,x − p2,x)2 +
(p1,y − p2,y)2 = d2 with distane parameter d = 0. For a distane on-straint (p1,x − p2,x)2 + (p1,y − p2,y)

2 = d2, the parameter d = 0 is notgeneri, as the onstraint is singular at the solution point. For an an-gle onstraint angle(p1, p2, p3) = θ, i.e. −−→p2p1 · −−→p2p3 = lp1p2
lp3p2

cos θ,the parameter values θ = ±π, θ = ±π/2, and θ = 0 are not generi.Similarly, point-line, line-plane inidenes and line-line, plane-plane par-allelism/orthogonality onstraints are not expressed by angle onstraintsbeause it would introdue non-generi angles.Typiality. A witness is typial if it is representative for the searhed solu-tion, i.e. it has the same ombinatorial properties (oinidenes, olinearities,oplanarities, et.). [4℄ assume that the sketh is a witness, and that the sketh7



and the witness are on the same ontinuation path. But even a random solution
(Xw, Aw), {(X, A) : F (X, A) = 0} with the spei�ed ombinatorial propertiesis typial with probability 1 for a set of witness solutions. Note that [18℄ builtan (arti�ial) ounter-example, i.e. a system with two lasses of solutions (thuswith two kinds of witnesses) whih are di�erent in ombinatorial properties, andno ontinuous deformation exists to transform one into the other. In suh ases,a witness is representative of only one lass (its lass) of solutions. This exampleis the one of Figure 4. Suh arti�ial systems are ignored in this artile.
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64 3 50Figure 4: Ambiguous system: if points are required to bedistint, then it is rigid (left ase); otherwise, when A and Chave the same oordinates, point D an be anywhere on thedotted irle (example taken from [18, Figure 14℄). Figure 5: A 2D sketh of arigid triangle.We an then study the degrees of freedom of the system by studying therank of the Jaobian matrix F ′(Xw, Aw) on a typial witness Xw, and in thease of under-onstrainedness, the struture of the allowed in�nitesimal motionsan be dedued from the study of the kernel of F ′(Xw, Aw).In the rest of this paper, we onsider that rows of the Jaobian matrixrepresent onstraints and olumns represent values of the unknowns (oordinatesof the geometri elements). We lassially denote by m the number of rows andby n the number of olumns of the matrix.2.2. Pratial exampleLet us now detail a step-by-step onstrution of a witness and its use toharaterize the degrees of freedom of the orresponding geometri onstraintsystem. We onsider the trivial geometri onstraint system of Figure 5.This GCS onsists of three sets:
• unknowns: X = {p1, p2, p3};
• parameters: A = {k1, k2, α};
• onstraints: C = {dist(p1, p2, k1), dist(p2, p3, k2), ang_ppp(p1, p2, p3, α)}The dimensioning given by the sketh is a funtion ρ : A→ R, with ρ(k1) =

6, ρ(k2) = 4, ρ(α) = 50. If one were to onsider the bottom left orner of thesketh as the origin and give oordinates to the points on the sketh, they wouldnot satisfy the onstraints with this dimensioning.8



Table 1: The Jaobian matrix for the system of Figure 1.
ẋ1 ẏ1 ẋ2 ẏ2 ẋ3 ẏ3

r1:dist(p1, p2, k1) x1-x2 y1-y2 x2-x1 y2-y1 0 0
r2:dist(p2, p3, k2) 0 0 x2-x3 y2-y3 x3-x2 y3-y2

r3:ang_ppp(p1, p2, p3, α) x3 − x2 y3 − y2 2x2 − x1 − x3 2y2 − y1 − y3 x1 − x2 y1 − y2Table 2: The Jaobian matrix of Table 1 at a witness.
ẋ1 ẏ1 ẋ2 ẏ2 ẋ3 ẏ3

r1 −1.1 2.58 1.1 −2.58 0 0
r2 0 0 4.4 0 −4.4 0
r3 −4.4 0 5.5 −2.58 −1.1 2.58Let us now measure the distanes on the sketh. We obtain a funtion ρ′,with ρ′(k1) = 2.82, ρ′(k2) = 4.35, ρ′(α) = 70.9. Obviously, the oordinates ofthe points on the sketh satisfy the onstraints of the system if the dimension-ing onsidered is ρ′. The generiity hypothesis tells us that the ombinatorialproperties of this alternate GCS are the same as the one with the dimensioningimposed by the user. For instane, if a subsystem of the GCS with ρ′ is rigid,then it is also rigid with ρ.Let us now ompute the Jaobian matrix assoiated with the system. First,we need to translate the geometri onstraints into equations. As explainedabove, a distane of k between two points pi and pj orresponds to the equation

(xi − xj)
2 + (yi − yj)

2 − k2 = 0. An angle of p̂1p2p3 whose osine is equal to aorresponds to the equation (x1− x2)(x3− x2)+ (y1− y2)(y3− y2)− a× lp1p2
×

lp2p3
= 0, with lpipj

indiating the distane between pi and pj.By derivating those equations, we obtain the Jaobian matrix of the system,given at Table 1. Using the generiity hypothesis, we an replae the values ofthe unknowns by the oordinates taken on the sketh: p1 = (3.7, 2.98); p2 =
(4.8, 0.4); p3 = (0.4, 0.4). This provides us with the Jaobian at the onsideredwitness, shown on Table 2.2.3. Generation of a witnessMost of the time, the sketh drawn by the user is a witness. Also, CAD partsare rarely designed from srath: usually, previous similar parts are re-used andmodi�ed; the parameters values are hanged and tuned for a new design, butthe onstraint system is left unhanged. Thus, solutions to the previous CADparts give a witness.Sometimes, however, no witness is available. For instane, when there aremany inidene or tangeny onstraints, the sketh may not ful�ll them. It mayalso happen that no previous sketh is available, for instane when designinga part or a mehanism for the �rst time. In those ases, a witness has to beomputed. A witness is a root of the system F (X, A) = 0, where both X and
A are unknowns. See Setion 7.3 for more details about systems ontaininginidene onstraints.For problems ourring in CAD-CAM, these systems are usually stronglyunder-onstrained: the solution is a manifold, e.g. a urve, a surfae, et. Thus,9



several methods are possible in order to generate a witness. For instane, thenext setion presents the most general method: it uses a omplete solver, i.e. asolver whih �nds all solutions (in real spae Rn). Even in the ase of stronglyunder-onstrained systems, suh a solver an easily be tuned to stop at the �rstfound root, and to explore the searh spae in some random order, so that the�rst found root is a typial witness with probability 1. Notie that this tunedsolver is still omplete in the sense that if it �nds no root, then it is a proof thatthere is none.We mention now some inomplete but simple and fast solvers whih anbe used to generate a witness by exploiting the harateristis of a witness:under-onstrainedness and generiity.First of all, when one faes a sketh whih does not ompletely ful�ll allinidene onstraints, it is possible to use said sketh to initiate a Newton-Raphson iteration3, an homotopy [25℄, an optimization method like Levenberg-Marquardt, or Nelder-Mead simplex [35℄. If no sketh is available, or if theprevious method fails, it is possible to start the iteration with random valuesfor X and A. Meta-heuristis [26℄ like geneti programming, partile swarm, et.an also be used with likely suess, due to the strong under-onstrainednessof the system to be solved. With all those methods, approximation problemsarise: this issue will be further disussed in setion 7.2.3.1. Using a omplete solver to generate a witnessTo ompute a witness (Xw, Aw), we solve the under-determined system
{(X, A) : F (X, A) = 0} where both X and A are unknowns with a ompletesolver, the subdivision solver presented in [8℄.The nonlinear monomials x2

i and xixj for i < j are replaed by additionalvariables xi,i and xi,j , whih are enlosed in a polytope BD(xi, xi,i, xi,j,i<j) ≥ 0with halfspaes given by the non-negativity of relevant Bernstein polynomi-als (Bernstein polytope). The quadrati onstraint system beomes a polytope
S(xi, xi,i, xi,j,i<j) ≥ 0 after rewriting into the additional variables xi,i and
xi,j . The subsript D of BD(xi, xi,i, xi,j,i<j) ≥ 0 indiates that this polytopedepends on the domain D. In this way, bounds for the solution domain ofquadrati polynomials an be expressed as two linear programs

min xi and max xi

S(xi, xi,i, xi,j,i<j) ≥ 0
BD(xi, xi,i, xi,j,i<j) ≥ 0Domain bounds are omputed by linear programming in order to redue theurrent solution domain D. If the feasible set is empty, whih is deteted bylinear programming, then the urrent domain box ontains no solution. Other-wise, we an perform a sequene of redutions and bisetions of domain boxes3The tehniques, e.g. singular value deomposition [35℄, to aount for non-square Jaobianmatries and under-onstrained systems are well known.10



until the domain box D = [x1, x1] × . . . × [xn, xn] is δ-small: (xi − xi) < δ forall i. These δ-small boxes over the solution set pieewise.The subdivision solver requires a domain box to start the searh. The in-tervals for generi parameter values of onstraints are easy to �nd: angle pa-rameters cos θ (cos θ instead of θ to avoid trigonometri funtions in the solver)are in [−1 + ǫ,−ǫ] or [ǫ, 1 − ǫ] with a small, arbitrary ǫ; intervals for distaneparameters d an be obtained from magnitude bounds of the point oordinates.Finding a bound on the magnitude of any root [45℄, would be neessary to provethat the system has no solution. For the problems here, a bound on the pointoordinates is known beforehand.In order to enumerate all solutions of a system, we used mid-bisetion of thelargest interval in [8℄, whih minimizes the height of the exploration tree whileyling through dimensions. For the ase of determining a single solution as fastas possible, the hoie of the smallest interval (greater or equal δ) is bene�ialas setting variables to values allowing solutions improves the e�etiveness of thedomain redution step.We selet the next domain box (of smallest minimum side length greaterthan δ) for redution and bisetion at random. In this way, we �nd a solutionbox ontaining a random solution, and we take the box enter projeted ontothe solution set as a witness.
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Figure 6: �The butter�y�:2D system with 5 pointsand 6 distane parameters
d(p0, p1), d(p1, p2), d(p2, p0),
d(p0, p3), d(p3, p4), d(p4, p0). Figure 7: 2D system of 4 points and 5 lines with 10point-line inidenes, 4 angle parameter angle(qp, cp),angle(cp, rp), angle(rq, cq), angle(cq, pq) and 1 distaneparameter d(r, c). Symmetri solution (left) and random,typial witness solution (right).As examples, we show two systems of di�erent di�ulty. In Figure 6, twotriangles with a ommon point p0 are spei�ed by six side lengths. In therandom solution, the side lengths are all di�erent. In Figure 7, four points and�ve lines with 10 point-line inidenes are spei�ed by four angle parameters anda distane parameter. The left part shows a solution with symmetri and nieshaped triangles, obtained by additional minimum distane onstraints betweenthe triangle points. In the right part, a typial witness solution is shown, whihwas found at random. It is used for further analysis.As a future work, we intend to onsider using onstraint propagation [16℄ tospeed up the solver. Also, we intend to try other heuristis for the hoie of the11



unknown to biset (for instane the smear funtion in [23℄).2.3.2. DisussionOne may question the usefulness of the witness method, when the ompletesolver has to be alled to ompute a witness. In this ase, it seems that theomplete solver is alled two times instead of just one: why not simply all theomplete solver on the target system (i.e. the system to be solved: F (X, Aw) =
0) ? The answers are three: �rst of all, the omplete solver is most of the timemuh faster when it is used to ompute a witness (assuming that it stops atthe �rst found root), sine one only needs to satisfy the inidene and tangenyonstraints; seond, the witness will be used to analyze and deompose the GCS,whih will usually speed up the seond step: solving the target system; third,when the omplete solver �nds no root when omputing a witness, it proves theabsene of roots for every parameter values, i.e. the problem does not omefrom the parameters values Aw, but it has a more fundamental ause. Sinethe problem of debugging suh systems of onstraints ours very rarely and isnot the topi of this artile, we just mention the priniple of a solution: addinrementally eah onstraint and searh a witness; it allows to �nd the �rstonstraint whih is the ause of the ontradition.3. Inremental detetion of redundanyWe already showed in Setion 1 that the detetion of over-onstrainedness isa ompliated yet essential problem in the �eld of geometri onstraint solving.In this setion, we exhibit a greedy algorithm, based on the witness method,whih allows an e�ient and robust detetion of redundany in geometri on-straint systems. We prove that this algorithm produes a minimal well-onstrai-ned subsystem with the same solutions as the initial one.We also show the usefulness of this extension of the witness method to en-hane robustness of deomposition methods by an aurate omputation of theboundary system.3.1. A greedy algorithm to detet redundany in a GCSIt was already shown in [30℄ that it is possible to interrogate a witness in orderto detet whether a set of onstraints is dependent or not. Indeed, it is possibleto ompute the rank of the Jaobian matrix at the witness and to ompare itwith the sum of the degrees of restrition of the onstraints. However, �nding amaximal independent subset of a dependent set is not a trivial problem. Workingon the witness, the naive idea would be to try and remove onstraints one byone and, at eah step, ompute the rank again to determine if the onstraint isredundant with the remaining set. If the rank omputed for S−c equals the rankomputed for S, then onstraint c is redundant and an be removed. Performedthat way, the removal of redundant onstraints is expensive. Yet, onsidering aninremental onstrution of the geometri onstraint system allows to identify12



the set of redundant onstraints with no additional osts in omparison to thebasi detetion of redundany.Indeed, onsider a geometri onstraint system S with no redundany be-tween the onstraints. Applying the Gauss-Jordan elimination method on theJaobian matrix at the witness leads to a matrix J ′ = (I P ), I being a m×mdiagonal matrix and P being a m × f matrix, with f = n −m the number ofatual degrees of freedom of the system. This method has a known omplexityof O(min(n, m)nm). Let us now onsider a system S′ with S ⊂ S′. In order toknow if S′ is generially over-onstrained, one only needs to inrementally addthe geometri elements and the onstraints (bearing in mind that a onstraintan only be inserted when the geometri elements it onerns are all in the sys-tem) of S′−S to S and applying Gauss-Jordan again. Sine the leftmost part ofthe matrix J ′ is diagonal, the number of operations is at most 2×min(m, n)×f :for eah row of I, eah non-zero element of P must be multiplied and added tothe new row. The number of operations is in fat smaller, sine the number ofzero elements in the new row is high.Proeeding inrementally does not raise the number of operations: it onlyhanges the order of the operations. Indeed, the lassial Gauss-Jordan elimina-tion method onsists of olumn-by-olumn operations: for eah olumn c, dividerow c by Jc,c, then subtrat Jr,c times the new row from row r for every r, sothat olumn c is a null vetor exept for the cth value. With the inrementalalulus of the redued row ehelon form, one proeeds row by row: for eahrow r, subtrat Jr,c times row c for eah c < r, then divide row r by Jr,r sothat the r − 1 �rst elements of row r are zero and the rth element is 1. Thus,the overall time omplexity of the inremental omputation of the redued rowehelon form of J is also of O(min(n, m)nm). The pseudo-ode for this inre-mental onstrution of a maximal independent subset of the onstraints is givenat Algorithm 1.Note that for the test of line 8, we do not here make expliit the ase where aonstraint c orresponds to several rows r1 . . . rk, for instane a distane betweentwo lines. In suh a ase, it is neessary to be able to rewrite the onstraintsystem in order to remove one row only (say r1) and replae the onstraint cwith (an)other onstraint(s) whih orrespond(s) to rows r2 . . . rk.The inremental version of the Gauss-Jordan elimination has the same om-plexity as the one-step version, but has a major advantage in our ase: at eahstep, when a onstraint is inserted, one may ompare the new rank with theprevious one and thus detet a redundant onstraint. With exatly the samenumber of operations as in the ase of the lassial Gauss-Jordan elimination,one obtains the redued row ehelon form of the Jaobian matrix together withthe list of redundant onstraints.Let us now show that the order in whih the onstraints are onsidered in theinremental onstrution of a maximal independent subset does not hange thesolution set. Said otherwise, if there are several maximal non-over-onstrainedsubsystems, they are equivalent. Following [29℄, we note Fϕ(S) the solution setof a GCS for a valuation ϕ of the parameters, and omit ϕ when there is noambiguity. 13



Algorithm 1: Greedy algorithm to ompute a maximal non-over-onstrained subsystemInput:
S′ = (C, X, A): a geometri onstraint system
W : a typial witness of S′Result: S ⊆ S′: maximal non-over-onstrained subsystem of S′

R← ∅ // set of redundant rows
J ← Jaobian matrix of S′ at W (of size m× n)
J ′ ← empty matrix with no rows and n olumnsforeah row r of J do5 add r to J ′ (we all r′ the new row of J ′)foreah row i of J ′ exept r′ do7 r′ ← J ′

r′,i × i8 if r′ is a null row then// the onstraint orresponding to row r is redundantRemove row r′ from J ′

R← R ∪ {r}else
r ← r

J′

r,r

A′ ⊆ A← set of parameters appearing only in onstraints of Rreturn S = (C/R, X, A/A′)Proposition 2. Let S = (C, X, A) be a generially over-onstrained GCS. Weonsider a valuation ϕ of the parameters whih make S onsistently over-onst-rained, i.e. suh that Fϕ(S) 6= ∅. Let S′′ be a basis of S, i.e. a maximalnon-over-onstrained system suh that Fϕ(S) = Fϕ(S′′). Let S′ be the systemobtained by applying Algorithm 1 on S. Then, F(S′) = F(S′′).Proof We argue by mutual inlusion.Step 1. F(S′′) ⊆ F(S′).
S′ is obtained by disarding some onstraints of S, without adding anynew onstraint: S′ ⊆ S. Thus, a solution of S satis�es all onstraints of S′:

F(S) ⊆ F(S′).Sine we onsider only parameters valuations suh that F(S) = F(S′′), wehave F(S′′) ⊆ F(S′).Step 2. F(S′) ⊆ F(S′′).We have to show that the solutions of S′ satisfy all the onstraints of S′′,i.e. that a solution of S′ is also a solution of S′′. We argue by ontradition.Let us onsider a row r of the Jaobian matrix JS′′ of S′′ whih is notredundant with the Jaobian matrix JS′ of S′. If we try to add r to JS′ as wedo at lines 5�7 of Algorithm 1, it will thus not be null at line 8.Sine JS′ was obtained by applying Algorithm 1 on the Jaobian matrix JSof S, row r is not redundant with JS either: it thus orresponds to a onstraint14



Table 3: The Jaobian matrix for the system of Figure 8.
ẋ1 ẏ1 ẋ2 ẏ2 ẋ3 ẏ3 ẋ4 ẏ4

r1: dist(p1, p2) x1-x2 y1-y2 x2-x1 y2-y1 0 0 0 0
r2: dist(p1, p3) x1-x3 y1-y3 0 0 x3-x1 y3-y1 0 0
r3: dist(p2, p4) 0 0 x2-x4 y2-y4 0 0 x4-x2 y4-y2

r4: dist(p3, p4) 0 0 0 0 x3-x4 y3-y4 x4-x3 y4-y3

r5: dist(p2, p3) 0 0 x2-x3 y2-y3 x3-x2 y3-y2 0 0
r6: dist(p1, p4) x1-x4 y1-y4 0 0 0 0 x4-x1 y4-y1whih is not in S and annot be dedued by the onstraints of S. We thenhave F(S) 6= F(S′′). By de�nition of S′′, this is not possible. There is aontradition, and we thus have F(S′) ⊆ F(S′′).Conlusion. We have F(S′′) ⊆ F(S′) and F(S′) ⊆ F(S′′). Thus, F(S′) =
F(S′′).

�Notie that the onstraints whih are identi�ed as redundant may be keptand be used later in order to �nd, among the di�erent solutions satisfying theonstraints, whih orrespond best to the user's intent: redundany an beneessary to ensure solution uniity [12℄.3.2. ExamplesWe give here a few examples of the appliation of Algorithm 1.PSfrag replaements p1 p2

p3 p4Figure 8: �The kite�: over-onstrained 2Dsystem with 4 points and 6 distanes. With-out the dotted onstraint, the system is rigid. Figure 9: �The double-banana�: famousounter-example to the extension of Laman'sharaterization of rigidity in 3D. Eah seg-ment represents a distane onstraint.Let us onsider the 2D example of Figure 8. The Jaobian matrix of thissystem is shown in Table 3. Consider the following witness: p1 = (2, 7), p2 =
(5, 6), p3 = (1, 1) and p4 = (6, 3). The Jaobian at this witness is shown inTable 4, with a partial Gauss-Jordan elimination, sine the sixth row has notbeen modi�ed. That is, Table 4 shows the matrix obtained by performing theinremental version of the Gauss-Jordan elimination, after inserting the sixthonstraint but before performing Gauss pivoting on it, i.e. at the end of line 5of the algorithm. It is easy to see that the sixth row is redundant, sine it an15



Table 4: The Jaobian matrix of Table 3 at a witness. The Gauss-Jordan elimination methodwas used on the �rst �ve rows. The sixth row is redundant (r6 = r′
2
− r′

1
)

ẋ1 ẏ1 ẋ2 ẏ2 ẋ3 ẏ3 ẋ4 ẏ4

r′
1

1 0 0 0 0 − 4

5
−1 4

5

r′
2

0 1 0 0 0 − 4

5
0 − 1

5

r′
3

0 0 1 0 0 − 3

5
−1 3

5

r′
4

0 0 0 1 0 − 1

5
0 − 4

5

r′
5

0 0 0 0 1 2

5
−1 − 2

5

r6 −1 1 0 0 0 0 1 −1be obtained by subtrating the �rst row from the seond one. Thus, we detetedthe over-onstrainedness.For a more omplex and famous example, onsider the 3D system of thedouble-banana (see Figure 9). Sine the assoiated Jaobian matrix is a 18×24matrix, we do not represent it here, but applying Algorithm 1 on the �rst 17 rowsand adding the last onstraint of the double-banana leads to a zero-�lled rowin the Jaobian matrix at the witness. If one onsiders a variant of the double-banana with higher onnetivity [28℄, our method still sueeds to e�ientlydetet over-onstrainedness: the degree of onnetivity of the onstraint graphhas no in�uene on the witness method. Likewise, the 3D examples by Ortuzar(see Figure 10) are orretly deteted as over-onstrained.
Figure 10: 3D examples (ourtesy of Auxkin Ortuzar, Dassault Systèmes) whih onfusegraph-based methods but are deteted over-onstrained by our method. No three points areoplanar, plain segments represent distane onstraints and ars represent angle onstraints.Moreover, the witness method orretly handles redundany in under-onst-rained ases, where graph-based methods are helpless beause they do not on-sider geometri theorems. For instane, onsider the 2D example of Figure 11.It is unlikely that a graph-based method an ever detet the fat that point yis �xed, no matter what oordinates are given to point p and line l. Hene, agraph-based method would see this system as a system with 8 remaining degreesof freedom (5 for the three aligned points a, b and x, 1 for line l traversing xand 2 for point p) and would onsider that adding a onstraint distane betweenpoints a and y removes a degree of freedom. The witness method, however, de-tets that this new distane onstraint is redundant and that the unknown y is16



determined by the system though l and p an be hosen at random.PSfrag replaements
a b x

p

l

y

p1
p2 p′

PSfrag replaements
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p

l

y
p1

p2
p′Figure 11: In 2D, given three aligned points a, b and x and for any point p and line l traversing

x, y is unhanged: p1 = (ap) ∩ l, p2 = (bp) ∩ l, p′ = (ap2) ∩ (bp1), y = (ab) ∩ (pp′).3.3. Computation of a well-onstrained boundary systemThe witness method and, more spei�ally, Algorithm 1 an be used toaddress an important problem in geometri onstraint systems deompositionmethods: the omputation of a non-over-onstrained boundary system.We saw in the example of page 3 about deomposition, that it is importantto be able to add information about a subsystem into the rest of the system,when using deomposition methods. The piee of information added is alledboundary.Reall [29℄ that a boundary system of a system S1 ⊆ S with respet to thesystem S2 = S − S1 is a system B suh that solutions in F(S2 + B) are allsub�gures of a �gure in S. Said di�erently, it is a system whih an replae S1without modifying the solutions when one looks only at the oordinates of thegeometri elements of S2. In deomposition methods [18℄, the omputation ofa boundary system is essential sine without it, the reombination of sub�guresan lead to �gures whih are not solutions of the system. Although not alled�boundary system�, this notion is present in all deomposition methods (e.g. itis expliit in the FRONTIER solver [33℄ and orresponds to the virtual bond inOwen's method [34℄).Intuitively, the boundary system of S1 with regard to S2 onsists of thesystem (C, X, A) with X the set of geometri elements shared by S1 and S2,and C (and A) the set of all geometri information (and orresponding metrivalues) whih an be omputed about elements of X in S1. However, this ap-proah an lead to generially over-onstrained boundary systems, even thoughthe assoiated parameters make them onsistently over-onstrained. If the on-sidered solving method is sensitive to generi over-onstrainedness, as are allombinatorial solvers, this approah annot be onsidered. The example of Fig-ure 12 shows a basi example where a naive boundary omputation leads toover-onstrainedness: here, S1 is the system onsisting in the p1 . . . p4 pointsand the distane onstraints represented by thik lines; the dotted lines rep-resent onstraints (of any type) onerning one of the pi points and one othergeometri element, not in S1. S1 is a rigid system. Hene, omputing all the in-formation about the elements of S1 means omputing, among other onstraints,all pairwise distanes between the points p1 . . . p4: this leads to omputing thesystem of Figure 8 as the boundary of S1 with regard to the rest of the system,i.e. an over-onstrained system. 17
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Figure 12: The boundary of the rigid sub-system with X = {p1, p2, p3, p4} is generi-ally over-onstrained: it ontains the sys-tem of Figure 8 Figure 13: Triangle well-onstrained mod-ulo similarities with six inidene on-straints and two line-line angle onstraintsUsing our greedy algorithm, omputing a basis of the boundary system iseasy: one only needs to start with an empty boundary system and add thedi�erent omputable onstraints one by one, disarding those whih are redun-dant with the ones already onsidered. In order to get all omputable on-straints, one needs to know the transformation group G suh that the systemis well-onstrained modulo G [37℄: then, one only needs to ompute all possi-ble G-invariant onstraints possible to express. For instane, if distanes are
G-invariant (i.e. G is the rotations, the translations or the diret isometries),one omputes all point-point distanes between two points of the system. Theexat proess is given at Algorithm 2. Proposition 2 proves that the order inwhih the onstraints are onsidered does not matter.Algorithm 2: Computation of a maximal non-over-onstrained boundarysystemInput:

S = (C, X, A): a geometri onstraint system
S1 = (C1, X1, A1): a subsystem of S
G: well-onstrainedness group of S1Result: B: maximal non-over-onstrained boundary system of S1

Xb ← {x ∈ X1|x is onerned by a onstraint c, c ∈ C/C1}
Cb ← set of all possible G-invariant onstraints onerning elements of Xb

Ab ← set of parameters appearing in Cb // Values omputed from S1

B ← result of Algorithm 1 on (Cb, Xb, Ab)return BAn additional problem is the fat that the geometrial universe onsideredby the solver may not allow to express the di�erent onstraints whih an beomputed in S1: for instane, it may be possible to ompute, in S1, that apoint p is inident to a line l, but if the geometrial universe does not inludepoint-line inidene onstraints, this onstraint will not be onsidered. In suh aase, it is not possible to ensure that the omputed system is indeed a boundarysystem. This issue is disussed in [29℄.18



4. Deision of anhor validity4.1. Over-onstraining anhorsGiven a system S and a witness of S, we an show using the witness methodthat it is not generially over-onstrained or, if it is, ompute a basis of S, thatis to say a maximal non-over-onstrained system whih has the same solutionset as S when we onsider valuation parameters whih make S onsistentlyover-onstrained. Let us therefore onsider systems whih are not generiallyover-onstrained.
S may be still under-onstrained. Following the multi-group approah [37℄,the under-onstrainedness may be the result of the well-onstrainedness of thesystem modulo a transformation group: for instane, a rigid system is under-onstrained, sine it may be translated or rotated without violating any on-straint. In [30℄, we show how to use the witness method to detet that a systemis invariant under the ation of translations and rotations, by reognizing thesegroups in the kernel of the Jaobian matrix (see in partiular Table 1 of theartile). One an, likewise, reognize salings by simulating their ation on twopoints. Hene, one may ompute the dimension of the kernel of the Jaobianand, if it is higher than the number of invariane groups identi�ed within it,onlude that the system is artiulated: it is under-onstrained even moduloglobal groups.When dealing with an artiulated GCS, one may want to determine whihgeometri elements should be anhored in order to get a �nite number of solu-tions. This researh of an anhor is a kind of parameterization of a geometrionstraint system, sine it onsists in giving a list of oordinates whih shouldbe given as parameters and not onsidered as unknowns if one is to have a �nitenumber of solutions. It generalizes the notion of G-referene [29℄: an anhor fora G-well-onstrained GCS is a G-referene.We do not here disuss an algorithm to �nd a parameterization of an ar-tiulated GCS, but we provide a proedure to deide if a set of oordinates isa valid anhor. Indeed, a set of oordinates whih has the same size as thedimension of the kernel is not neessarily an anhor for the system, and maybe an over-onstraining anhor if onsidering them as parameters leads to theabsene of solutions.For instane, onsider a simple rigid triangle. It has three degrees of freedommodulo diret isometries, thus an anhor must ontain three oordinates. Alassial anhor would be both oordinates of one point, and one oordinate ofanother, but other anhors are valid as well: absissas of two points and theordinate of another. But the set of all absissas is not a valid anhor, beausein any rigid system, with two absissas anhored, the absissas of all pointsare �xed. Likewise, onsider the system of Figure 13, whih is well-onstrainedmodulo similarities. Sine any line-line angle an be omputed in this system,no anhor ontaining the diretions of two lines is valid (e.g. both oordinatesof p1, diretions of l1 and l2). 19



4.2. A deision algorithm for over-onstraining anhorsOver-onstraining anhors are due to a dependeny of the oordinates in theGCS, that is to say that given a subset of an over-onstraining anhor and theonstraints, one an ompute the values of another subset of the anhor. Wegive here an algorithm to detet suh dependenes and hene deide whether apotential anhor is over-onstraining or not.Obviously, the size of an anhor must be exatly the dimension of the kernelof the Jaobian matrix of the system, i.e. the number of atual degrees offreedom. We thus do not disuss the ases of over-sized anhors (whih arein any ase over-onstraining) or under-sized anhors (whih an still be over-onstraining and, when they are not, are not atual anhors either, sine theydo not lead to a �nite number of solutions).When onsidering a valid anhor, the J
−→
V = 0 equation4, one J put inredued ehelon form, is the following (for onveniene we use here the notation

vi instead of ẋi):
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In this notation, the n−m last elements of vetor −→V are denoted van−m
to

va1
. There are as many vak

elements as the dimension of the kernel of J .Let us now imagine that after the i−1th step of the Gauss-Jordan elimination(the upper left (i − 1) × (i − 1) matrix is diagonal), it is impossible to �nd anon-zero pivot. It means that the ith olumn is a linear ombination of the�rst i− 1 olumns. Permuting this olumn with one of the �rst i − 1 olumnswill not hange the problem: the new ith olumn will (by de�nition of lineardependeny) be a linear ombination of the new leftmost i−1 olumns. Likewise,permuting the ith olumn with a olumn of index between i+1 and m will onlypostpone the problem: if it is a linear ombination of the �rst i− 1 olumns, itis also a linear ombination of the �rst i− 1 + k olumns if k ≥ 0.It will thus not be possible to diagonalize the left part of the Jaobian matrixunless the ith olumn is permuted with one of the n −m rightmost olumns.This ondition is neessary but not su�ient, sine some of the last n − molumns an themselves be linear ombination of the �rst i− 1 olumns.If one does not manage to diagonalize the m×m left matrix of the Jaobian,it means that the parameterization onsisting in anhoring the oordinates or-4Cf. equation 1, p. 7. 20



responding to the n−m rightmost olumns is not valid: it means that it is notpossible to express the variations of the n �rst oordinates as a funtion of thoseonsidered as parameters. Indeed, one the produt J
−→
V performed, the ith rowof the equation an be written

vi + α1,i × van−m
+ · · ·+ αn−m,i × va1

= 0and thus
vi = −α1,i × van−m

− · · · − αn−m,i × va1
(2)Said di�erently, we an express vi (the variations of the oordinate xi) as afuntion of van−m

. . . va1
(the variations of the oordinates xan−m

. . . xa1
). Thisis the exat de�nition of an anhor: if the xak

oordinates are �xed, the otherelements are also �xed. Thus, if it is not possible to express the �rst m olumnsas funtion of the n−m last olumns, then the orresponding parameterizationis an over-onstraining anhor.Algorithm 3: Algorithm to deide if a given subset of the unknowns is avalid anhorInput:
S = (C, X, A): a geometri onstraint system
W : a typial witness of S
A: a subset of the oordinates of the elements of XResult: Boolean indiating if A is a valid anhor for S

J ← Jaobian matrix of S at W (of size m× n)
k ← nfor i from 1 to m− |A| dowhile olumn i orresponds to a oordinate in A doPermute olumn i of J with olumn k

k ← k − 1if there is a non-null pivot in olumn i thenPerform Gauss-Jordan elimination on olumn ielsereturn falsereturn trueA simple method to deide if a given subset of the oordinates forms avalid anhor is thus to do the neessary permutations in order to have theorresponding olumns at the right of the matrix, and then to perform a Gauss-Jordan elimination in order to attempt to diagonalize the leftmost part of thematrix. Upon suess, we an onlude that we have a valid anhor; uponfailure, we have an over-onstraining anhor. The pseudo-ode for this deisionmethod is given at Algorithm 3.The time omplexity of this algorithm is that of the Gauss-Jordan elimina-tion method, i.e. O(min(m, n)mn). Sine we are sure that the system is notgenerially over-onstrained, n ≥ m, the time omplexity is O(m2n).21



5. Detetion of maximal well-onstrained subsystems in artiulatedsystemsIn Setion 4, we have addressed the issue of artiulated systems, i.e. GCSwhih are under-onstrained even modulo global transformation groups (trans-lations, rotations, salings, and their ombinations), by giving an algorithm todeide whether a subset of the oordinates of the unknowns forms an anhor ofthe system. In this setion, we also address the handling of artiulated systemsby giving means of identifying maximal G-well-onstrained subsystems for thedi�erent groups G mentioned above. We use this to ompute a set of maximal
G-well-onstrained subsystems whih form a over of the GCS.We begin in Setion 5.1 by explaining the identi�ation of maximal rigid sub-systems (MRS), then extend this in Setion 5.2 to the identi�ation of maximal
G-well-onstrained subsystems (MGS) for other groups than the diret isome-tries and explain what are the neessary onditions on a transformation group
G for our method to work. Finally, in Setion 5.3, we provide a skeletonizationalgorithm based on the identi�ation of MGS.For the sake of simpliity, we onsider 2D systems in the rest of this setionand onsider thus that a rigid system has 3 degrees of freedom. Nevertheless,our algorithms work exatly the same way in 3D.5.1. Identi�ation of maximal rigid subsystemsThe basi idea of our MRS detetion algorithm is to study whih geometrielements are �xed when one anhors a referene for the diret isometries. Asexplained in Setion 4, within the witness framework, anhoring a referene forthe diret isometries onsists in swithing olumns in the Jaobian matrix so asto put the three olumns of the referene in the rightmost positions. Reall (seeEquation 2) then that after performing a Gauss-Jordan elimination method, theleft sub-matrix of the Jaobian matrix is diagonalized and, thus, the ith row ofthe equation J

−→
V = 0 an be read as

vi = −α1,i × van−m
− · · · − αn−m,i × va1With a rigid GCS in 2D, there are 3 vak

elements. For instane, Table 4shows the redued row ehelon form of the Jaobian matrix at the witness forthe GCS of Figure 8. Sine this GCS is rigid (with the redundant onstraintremoved), three olumns do not belong to the identity part of the matrix: theyorrespond to oordinates x4, y4 and y3, whih form a referene for the system.All other oordinates an be expressed in funtion of these three oordinates. Forinstane, the �rst line of the matrix must be interpreted as ẋ1− 4

5
ẏ3− ẋ4+ 4

5
ẏ4 =

0, i.e. ẋ1 = 4

5
ẏ3 + ẋ4 − 4

5
ẏ4.When the GCS is not rigid, the size of an anhor is higher than 3. Thereare then more than three olumns at the right of the identity sub-matrix afterperforming a Gauss-Jordan elimination. Table 5 shows the redued row ehelonform of the Jaobian matrix at a witness for the GCS of Figure 14. Notiethat olumns y2 and y4 were moved to the right, sine it would have been22



Table 5: Redued row ehelon form of the Jaobian matrix at a witness for the GCS ofFigure 14̇
x1 ẏ1 ẋ2 ẋ3 ẏ3 ẋ4 ẋ5 ẏ5 ẋ6 ẏ2 ẏ4 ẏ6 ẋ7 ẏ7

r′

1
1 0 0 0 0 0 0 0 0 4

3

101

18
− 181

108
-1 − 473

108

r′

2
0 1 0 0 0 0 0 0 0 − 7

3
− 40

9

28

27
0 140

27

r′

3
0 0 1 0 0 0 0 0 0 4 29

2
− 15

4
-1 − 59

4

r′

4
0 0 0 1 0 0 0 0 0 0 9

2
− 17

12
-1 − 37

12

r′

5
0 0 0 0 1 0 0 0 0 0 5

2
− 7

12
0 − 35

12

r′

6
0 0 0 0 0 1 0 0 0 0 3 − 7

6
-1 − 11

6

r′

7
0 0 0 0 0 0 1 0 0 0 0 − 2

3
-1 2

3

r′

8
0 0 0 0 0 0 0 1 0 0 0 − 1

6
0 − 5

6

r′

9
0 0 0 0 0 0 0 0 1 0 0 − 7

6
-1 7

6impossible to �nd a pivot and �nish the Gauss-Jordan elimination otherwise.The variations of all oordinates an be expressed as funtions of ẏ2, ẏ4, ẏ6, ẋ7and ẏ7. Indeed, an anhor for this GCS an onsist in point p7, diretion p7-p6,diretion p5-p4 and diretion p3-p2.PSfrag replaements
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p7Figure 14: 2D artiulated hain made of three rigid triangles. Distane onstraints are im-pliitly represented by the segments.An important result to identify MRSs omes from the zeros in olumns ẏ2and ẏ4. Rows 7, 8 and 9 of Table 5 an be interpreted as the fat that the valuesof ẋ5, ẏ5 and ẋ6 depend only on those of ẏ6, ẋ7 and ẏ7. Put di�erently, if oneanhors a referene for the diret isometries by pinning down p7 and diretion
p7-p6, then points p6 and p5 are �xed, i.e. p5p6p7 is a rigid subsystem.With this result, it is possible to design an algorithm to identify a set ofMRSs whih form a over of the GCS. Suh a over is unique: if it were not, itwould mean that there exists a rigid subsystem S whih, in one of the existingovers, is split into two di�erent MRSs. By de�nition of a MRS, if a part of Sis inluded in a MRS, the other part also is.A naive algorithm immediately arises, based on anhoring a referene for thediret isometries, i.e. swithing olumns to have the orresponding olumns onthe right of the Jaobian matrix and identifying the parts of the GCS whih are�xed. The pseudo-ode is shown at Algorithm 4. In this algorithm, anhoringa referene for the diret isometries means swithing olumns so as to have theolumns orresponding to the referene at the right of the Jaobian matrix. Inorder to not identify the same MRS twie, we anhor referenes only on untaggedparts of the GCS, that means that at least one of the olumns annot be tagged.The ost of this algorithm depends on the number k of MRSs: for eah of23



Algorithm 4: Naive MRS identi�ation algorithmInput:
S = (C, X, A): a geometri onstraint system
W : a typial witness of SResult: Set of MRSs of S

M ← ∅ // set of MRSs
J ← Jaobian matrix of S at W
i← 0repeatAnhor a referene for the diret isometries on an untagged part of SPerform a Gauss-Jordan eliminationTag with label i the olumns of J whih orrespond to oordinatesdepending only on the 3 last olumns

M ←M ∪ {subsystem orresponding to the olumns with tag i}10 i← i + 1until all the olumns are taggedforeah onstraint c ∈ C doif there is no system in M whih inludes c then
M ←M ∪ {subsystem orresponding to c}return Mthem, it performs a Gauss-Jordan elimination only one, so that the total ost is

O(k min(n, m)nm), that is O(km2n) sine the system is not over-onstrained.This ost an be redued to O((k + m2n), i.e. O(m2n), by not starting theGauss-Jordan elimination from srath for eah MRS. At the end of line 10 inthe algorithm, the Jaobian matrix at the witness is in redued row ehelon form.By swithing the olumns in an appropriate way, one only needs to perform theGauss-Jordan pivot operation on two to three olumns. Indeed, by looking atthe onstraint graph, it is possible to selet a new anhor for the GCS whihsatis�es the following onditions:
• it inludes a referene for the diret isometries whih is not totally tagged,
• eah identi�ed MRS is �xed, i.e.� the referene inludes three oordinates in the MRS,� or the MRS shares a geometri element with a �xed MRS and thereferene inludes a oordinate in the MRS.To selet this referene, one only needs to onsider a geometri elementwhih is in an already identi�ed MRS and whih is linked by a onstraint toan untagged element. More ases our with systems for whih the onstraintgraph has several onneted omponents or with systems with impliit points(e.g. similarity-invariant systems with only lines and angles), but the prinipleremains the same. Thus, in most ases, one only needs to swith two olumns, so24



as to hange the point in the referene. Three swithes happen with disonnetedgraphs. Algorithm 5 shows how to perform MRS identi�ation. For the sake ofsimpliity, the algorithm is desribed for artiulated GCS made of several MRSsonneted by points, but it is easily extended to systems with other kinds ofgeometri elements.Algorithm 5: MRS identi�ation algorithm for an artiulated systemInput:
S = (C, X, A): a geometri onstraint system
W : a typial witness of SResult: Set of MRSs of S

J ← Jaobian matrix of S at WAnhor a referene for the diret isometries and identify and tag a �rstMRSrepeatSelet a tagged point linked by a onstraint to an untagged elementSwith the olumns of this point with the olumns of the point in thelast referenePerform Gauss-Jordan elimination on the two latter in order toidentify a new MRSTag the new MRSuntil all the olumns are taggedforeah onstraint c ∈ C doif there is no system in M whih inludes c then
M ←M ∪ {subsystem orresponding to c}return MIn the ase of open hains, i.e. GCS where all yles in the onstraintgraph are inluded in rigid subsystems, an even less ostly algorithm exists, byusing both the onstraint graph and the Jaobian matrix. After performingthe Gauss-Jordan elimination, a �rst MRS is identi�ed by onsidering all theoordinates whih depend only on the referene. From there, one an onsider allthe oordinates whih depend on the referene and on one additional parameter.In the matrix of Table 5, with the additional parameter ẏ4, we an �x ẋ3, ẏ3and ẋ4. Taking a look at the onstraint graph, we notie that the previouslyidenti�ed MRS (p5p6p7) shares only one point with the rest of the system andthus annot �transfer� more than two degrees of freedom.This enables us to remove the MRS and exhange the three parameters ẏ6,

ẋ7 and ẏ7 with parameters ẋ5 and ẏ5 in the Jaobian matrix. The numerialvalues are not important in this proess: we onsider that all the values of botholumns are non-zero. With this new matrix, one noties that x5, y5 and y4form a referene for the diret isometries and that by anhoring the variationsof this referene, ẋ3, ẏ3 and ẋ4 are �xed, i.e. p3p4p5 is a rigid system. Weontinue this algorithm by notiing that this system shares only one point with25



the rest of the system, removing it and replaing it with non-zero-�lled olumns
ẋ3 and ẏ3 and thus identifying the last MRS p1p2p3.When the last identi�ed MRS shares more than one point with the restof the system, two ases our: either the removal of the MRS leads to twodisonneted graphs (i.e. the MRS is in the middle of the artiulated system)and one thus ontinues the algorithm separately on eah part of the graph; orthe MRS belongs to a non-rigid losed hain.When one uses this algorithm on a GCS ontaining non-rigid losed hains, itleads to ases where one annot detet the MRSs of the losed hains, beause ofthe inter-dependene of the rigid subsystems of the hain. After identifying the�rst MRS of the losed hain, the algorithm is stuk beause it is not possible toidentify another system whih depends only on three parameters. In this ase,we get bak to Algorithm 5 to identify the di�erent MRSs of the losed hain.5.2. Extension to other transformation groupsAlgorithm 4 an be adapted to identify maximal G-well-onstrained sub-systems, for transformation groups G other than the diret isometries (see [37℄or [29℄ for formal de�nitions of the transformation groups in the ontext ofgeometri onstraints).There are several onditions on G. First of all, if one wants to hek that thewhole system is G-invariant, in order to know if the system is under-onstrainedmodulo G, one needs to be able to simulate the ation of G in the Jaobianmatrix. In [30℄, we showed how to simulate the ation of the translations androtations, whih enables the reognition of these groups in the kernel of theJaobian matrix. As mentioned in Setion 4, it is possible to likewise simulatethe ation of salings. In order to simulate a saling entered on point O andwith a saling fator of f , we apply a translation on a point p1, with diretion−−→
Op1 and a norm x, and another translation on a point p2, with diretion −−→Op2and a norm ||

−−→
Op2||

||
−−→
Op1||

x.Seond, one needs to be able to anhor a G-referene, whih means onemust be able to selet olumns of the Jaobian matrix whih orrespond to a
G-referene. We already desribed how to do this for the diret isometries. Inorder to anhor a referene for the similarities, for instane, one needs to onsideras �xed the oordinates of two points in 2D, with an additional oordinate ofa third point (in order to simulate the anhoring of the diretions between thetwo �xed points and the third point) in 3D.With these two onditions ful�lled, adapting Algorithm 4 to identify maxi-malG-well-onstrained subsystems (MGS) is straightforward: instead of anhor-ing referenes for the diret isometries, one anhors G-referenes. Beforehand,one only needs to remove all non-G-invariant onstraints5. The pseudo-ode isgiven at Algorithm 6.5In some ases � when parameter values are not independent, or when using exoti formula-tions (e.g. Cayley-Menger determinants to speify olinearities, oyliities and oplanarities)� removing metri onstraints an lead to geometri onstraint systems whih are projetively26



Sine we use the generiity hypothesis, we onsider here that the parametersare independent. Otherwise, removing the G-invariant onstraints might leadto losing information: for instane, if two onstraints have the same metriparameters, they indue an equality onstraint, but not under the generiityhypothesis, sine using other values of the parameters removes this equality.Algorithm 6: Naive MGS identi�ation algorithmInput:
S = (C, X, A): a geometri onstraint system
W : a typial witness of S
G: a transformation groupResult: Set of maximal G-well onstrained subsystems of S

M ← ∅ // set of MGSs
J ← Jaobian matrix of S at W
i← 0foreah onstraint c ∈ C doif c is not a G-invariant onstraint then

C ← C/{c}repeatAnhor a G-referene on an untagged part of SPerform a Gauss-Jordan eliminationTag with label i the olumns of J whih orrespond to oordinatesdepending only on the olumns of the G-referene
M ←M ∪ {subsystem orresponding to the olumns with tag i}
i← i + 1until all the olumns are taggedforeah onstraint c ∈ C doif there is no system in M whih inludes c thenAnhor a G-referene inluding cIdentify the orresponding MGS mc

M ←M ∪ {mc}return MIt is possible, as was the ase for Algorithm 4, to adapt this algorithm in orderto perform fewer steps of the Gauss-Jordan elimination, by taking into aountthe onstraint graph and reduing the number of olumn swithes between twoMGS.Also, notie that it is possible to onsider a rigid system and to make itwell-onstrained modulo the similarities, by replaing the unit of distane on-straints with a parameter. This is useful in industrial CAD appliations, whereless onstrained than the initial system. For the sake of oniseness and simpliity, we ignorethose ases. 27



previously solved systems are re-used at a di�erent sale. Furthermore, in suha ase, a witness is diretly available: a solution of the previously solved system.5.3. Skeletonization of a geometri onstraint systemIn this setion, we propose an algorithm to skeletonize a geometri onstraintsystem, that is to say transform a system S into a system S′ suh that |F(S)| =
|F(S′)| and suh that any �gure in F(S′) is a sub�gure of a �gure in F(S).The basi idea is to replae maximal G-well-onstrained subsystems with theirboundary system.Skeletonization algorithms already exist in geometri onstraint solving: graph-based retropropagation algorithms [5, 32, 41℄ remove geometri elements andonstraints that an be built if the rest of the system is built, until they get asystem whih needs to be built from srath. This remaining system, the skele-ton, has as many degrees of freedom as the initial system, and any variationof the oordinates of an element in the initial system an be expressed as afuntion of the variation of the oordinates of the skeleton elements.The interest of skeletonization also lies in the graphial feedbak it gives tothe user about the �exibility of the system: for instane, if the skeleton of theGCS is made of two bars linked by a ommon point, the user instantly sees thatthe GCS is made of two rigid systems whih an rotate around their ommonlink.In order to transform a GCS into its skeleton, we use Algorithm 6, in orderto identify maximal G-well-onstrained subsystems, and Algorithm 2, in orderto ompute the boundary of the identi�ed MGSs. The algorithm onsists inidentifying all MGSs and replaes them with their boundary. The pseudo-odeis given at Algorithm 7.Algorithm 7: G-skeletonization of a GCSInput:
S: a geometri onstraint system
W : a typial witness of S
G: a transformation groupResult: G-skeleton of S
J ← Jaobian matrix of S at W
M ← list of MGSs of S identi�ed by Algorithm 6foreah MGS k = (Ck, Xk, Ak) ∈M do

B = (Cb, Xb, Ab)← boundary system of k omputed with Algorithm 2if Xb 6= Xk thenReplae k with BThe time omplexity of Algorithm 7 is as follows. It uses Algorithm 6, whihis in time O(m2n). For eah MGS of the system, it uses Algorithm 2, whihis also in O(m2n). If there are k MGSs, the overall time omplexity is thus in
O(km2n). 28



6. W-deomposition of a GCSThe previous setion gives algorithms to identify all MGSs of a GCS. Havingsuh an algorithm leads to a natural method to deompose a G-well-onstrainedgeometri onstraint system. We all this method W-deomposition and a sys-tem whih an be deomposed by this method is said to beW-deomposable. Inthis setion, we explain the priniples of W-deomposition and give examples.Algorithm 6 identi�es maximal G-well-onstrained subsystems, i.e. if a MGSan be deomposed in several G-well-onstrained subsystems, this will not bedeteted. The basi idea of W-deomposition is to remove onstraints from thesystem and see if it breaks the MGS in non-trivial MGSs, i.e. MGSs whih arenot limited to their boundary (e.g. a system limited to a point-point distane).If it does, then we use W-deomposition on eah non-trivial MGS. Algorithm 8gives the pseudo-ode of the algorithm.Algorithm 8: W-deompositionInput:
S = (C, X, A): a G-well-onstrained geometri onstraint system
W : a typial witness of SResult: Tree of G-well-onstrained subsystems of Srepeat2 Selet a onstraint c ∈ C3 L← list of the MGSs of (C\c, X, A) identi�ed using Algorithm 6while L ontains only trivial MGSs doSelet a onstraint c whih was not seleted yet

L← list of the MGSs of (C\c, X, A) identi�ed using Algorithm 6until all onstraints have been tested or we �nd a non-trivial MGSif L ontains only trivial MGSs thenreturn a leaf labeled with Selse
A ← hildless node labeled with Sforeah Si ∈ L do13 Root the W-deomposition of Si as hild of A
S ← S − Si

S ← S+ boundary of Si16 Root the W-deomposition of S as hild of Areturn ALet us illustrate this algorithm on the example of Figure 15a, whih repre-sents the onstraint graph of a 2D rigid GCS. The graph is 3-onneted andhas two K3,3 subgraphs6, onneted by three �middle� edges (p1p2, p3p4 and6The K3,3 struture of the subgraphs is not obvious, but is better seen by numbering theverties lokwise and onsidering the subsets of even verties and odd verties.29



p5p6). Algorithm 6 detets the rigidity of the whole system. Let us onsider theremoval of two onstraints at line 2 of Algorithm 8: dotted edges e1 and e2.If we remove edge e1, the use of Algorithm 6 at line 3 identi�es four MGSs:the rigid K3,3 subsystems, and eah edge between them. The latter are equiv-alent to their boundary. Replaing the rigid hexagons by their boundaries andreintroduing edge e1 leads to the graph of Figure 15b (note that edge e1 mustbe taken into aount for the omputation of the boundaries). The reursive useof W-deomposition (line 13) on eah non-trivial MGS leads to the knowledgethat they are not W-deomposable. The same happens with the reursive useon the system of Figure 15b (line 16).If we do not remove edge e1 but e2 instead, the left K3,3 subsystem ofFigure 15a is no longer rigid. The identi�ation of non-trivial MGS thus onlyidenti�es the hexagon on the right of Figure 15a. One it is replaed by itsboundary, we obtain the system shown on Figure 15. The reursive use of W-deomposition will then lead, after removal of one of the three �middle� edges,to the identi�ation of the seond rigid hexagon and thus to the system shownon Figure 15b.
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Figure 15: 2D systems where edges represent point-pointdistanes; (a): 3-onneted onstraint graph made of two
K3,3 graphs onneted with 3 onstraints; (b) and ():graphs obtained by replaing MRSs identi�ed by Algo-rithm 8 by their boundary with respetively edges e1 and
e2 removed. Figure 16: Generalized Stewartplatform: both thik hexagonsare rigid; the other segments in-diate distane onstraints.Let us onsider the 3D example of Figure 16, a generalized Stewart plat-form [40℄. It onsists of two platforms (the rigid hexagons in thik lines) linkedby six distane onstraints. The whole system is rigid, whih is easily detetedby the witness method (it is also haraterized as rigid by the 3D extension ofLaman's theorem [24℄). Sine any rigid subsystem an be identi�ed by Algo-rithm 6, no matter how it is omposed, the W-deomposition will identify:30



• both platforms as rigid if one of the six distane onstraints is seleted;
• one platform as rigid if seletion of a onstraint in the other platformmakes it artiulated.Of ourse, whatever onstraint is seleted �rst, both platforms will eventuallybe identi�ed as rigid. Notie that whatever rigid subsystem is linked to theplatforms, it will be identi�ed as rigid and replaed by its boundary, i.e. aminimal rigid hexagon.Exeution time depends on the hoie of the removed onstraint. In theworst ase, all onstraints are tested: m times the Algorithm 6 is used, thus thetime omplexity is O(m3n).Our algorithm is more powerful than algorithms found in the literature, forseveral reasons:
• �rst of all, it is independent of the onnetivity of the onstraint graph. Forinstane, Figure 17a gives an example of a 4-onneted onstraint graphwhih isW-deomposable, no matter what is inside the inner blue part aslong as it is rigid; we may likewise build W-deomposable systems witha k-onneted onstraint graph, for any k, by onsidering two polygonswith k verties, linked by k onstraints, one of the polygons being rigid(see Figure 17b);
• seond, it is also not based on a luster formation. Sine the graph ofFigure 17 is not deomposable by urrent graph deomposition methods,the system of Figure 17a, with the inner part replaed by Figure 17,will also lead to a deomposition failure for these methods, whereas it is
W-deomposable.Ultimate deomposition onsists in yielding a triangular equation system.For algebrai systems, Ritt-Wu deomposition [1℄ or Gröbner bases with lexialorder lead to suh deompositions, but unfortunately, they are intratable inthe CAD domain. On the other hand, W-deomposition is not as powerful asthese algebrai methods sine it is possible to onstrut an in�nite family ofW-indeomposable onstraint systems like the one depited in Figure 17d: thereis no onstraint in this system suh that its removal produes a system with aMRS bigger than a point-point distane. But, on the positive side, it is easy tosee that
• all Owen-deomposable systems [34℄ are W-deomposable (that is, arti-ulation pairs are deteted by the hoie of the deleted onstraint)
• all onstraint systems whih are deomposable by luster formation meth-ods or on the searh of minimal rigid parts, are also W-deomposable.We think that the ratio of e�ieny to power of deomposition is good enoughto give good results in CAD even in the 3D ase.31
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Figure 17: 2D rigid examples for the W-deomposition:eah vertex is a point and eah edge representsa distane onstraint. (a): W-deomposable 4-onneted GCS (the blue subsystem is rigid); (b): W-deomposable k-onneted GCS (the blue subsystem isrigid); (): W-indeomposable system; (d): there are
W-indeomposable systems with an arbitrary number ofpoints.

Figure 18: System with onlypoint-line inidene onstraintsand without any rational solu-tion
7. Robustness issues7.1. The problemOur method assumes that it is possible to ompute the rank of a set ofvetors, given by their oordinates. It is a basi problem in omputerized linearalgebra with well-known methods. Only at �rst glane does it seem to be aneasy problem.Sine the rank is not a ontinuous funtion, it is not omputable in the senseof Computable Analysis [43℄. In short, Computable Analysis represents realnumbers with sequenes of nested intervals; the bounds of these intervals arelong �oat numbers, typially represented as m2e, m ∈ Z, e ∈ Z; the mantissas mare alulated with an arithmeti managing long integers. The width of intervalsenlosing the real numbers an be made arbitrarily small (within the limitationof omputing power and memory), but it is never zero. This arithmeti anhandle rational numbers, algebrai numbers, and transendental numbers.It is semi-deterministi in the following sense. On the one hand, it andetet that a number is non-zero: ompute a su�iently preise interval whihdoes not ontain zero; on the other hand, it annot detet that a number (e.g. aGauss pivot, or a determinant) is zero when this number is null: it would requirereahing the interval [0, 0], whih is impossible in �nite time. For example, thisarithmeti an ompute intervals enlosing√2 with great auray, but intervalsfor (
√

2)2 − 2 will never be [0, 0]. 32



Similarly, this arithmeti an deide that two distint real numbers are dif-ferent, but annot deide that two equal numbers are equal. A onsequene isthat it is possible to numerially prove that a set of given vetors are linearlyindependent (when they are), but it is not possible to numerially prove thatthey are dependent when they are.If a rational witness is available, an exat rational arithmeti an be used.The rank of rational vetors is omputable, and this approah is pratial. It isexplored in [30℄ with a number of examples.Sometimes a rational witness is not available; it also happens that someproblems have no rational solution, and thus no rational witness at all. Se-tion 7.3 disusses whih problems have rational solutions, and whih have not.Notie that no numerial solver provides an exat rational witness, even whenit exists: the solution returned by a numerial solver is either a �oating-pointapproximation, or some small box ontaining an isolated root, or some smallbox of a over of the solution manifold.A theoretial solution is to resort to some exat algebrai arithmeti, whenthe onstraint system is algebrai. However, this approah is not pratial andits relevane is questionable. We here present a more reasonable solution.7.2. Numerially typial witnessesThe simplest and radial solution to this problem is to require the witnessto be not only typial, but also to be numerially typial. For example, for threenon-ollinear points A, B, C, the angle between AB and BC must be su�ientlydi�erent from π and from 0 in a numerially typial witness. Then it su�es touse the lassial epsilon heuristi: if the angle between AB and BC is lose to
π or 0, i.e. the 3 points A, B, C are numerially very lose to alignment, thenthey indeed are ollinear, and the di�erene from 0 or π is due to numerialinauray.This requirement seems to be a reasonable prerequisite for a witness. Alldynamial geometry softwares (Cabri Géomètre, Cinderella, GeoGebra, et.)whih are used for geometry teahing already rely on this requirement, and useit routinely: the student or the teaher interatively spei�es some geometrionstrution (say with ruler and ompass), then interrogates the dynamial ge-ometry software to know if some property (alignment of three points, oyliityof four points) holds. The �gure is onsidered as a numerially typial witness,and the request is answered onsidering the oordinates of points, lines andirles in the �gure.Lukily, the ontext of geometri onstraint solving is a situation where theepsilon heuristi is su�ient: in Computational Geometry, where people annothoose their data, the epsilon heuristi is not su�ient to ahieve robustness.7.3. Geometri problems and rational realizationsSome geometri problems have no rational solution, thus no rational wit-ness, for instane a regular pentagon. More surprisingly, it is possible to build33



2D problems whih involve only point-line inidenes and whih have no ratio-nal solution. For instane the pentagon in Figure 18 involves no metri on-straints at all (neither distane nor angle are spei�ed) but it is projetivelyequivalent to the regular pentagon, or in other words, it is a perspetive of aregular pentagon; this pentagonal star is not realizable in the rationals. Al-most all regular n-polygons, as well as their projetive variant whih involvesonly point-line inidenes, are non-realizable with rationals, exeptions being
n = 3, 4, 6; for instane an equilateral triangle has the rational realization:
(1, 0, 0), (0, 1, 0), (0, 0, 1) and this extends easily to regular hexagons. The latter�heating� trik (using 3D oordinates for a 2D problem) annot be used forpentagons, heptagons, et. but the proof is omitted for oniseness.To sum up, some 2D problems involving only point-line inidenes have norational solution, and thus no rational witness. Of ourse, if suh a systemis a subsystem of the system to be solved, whether there are other types ofonstraints or not, the absene of rational solutions and witnesses holds.Other less arti�ial 2D geometri problems without rational solution involvemetri onstraints, for instane biseting lines (i.e. equal angles): the bisetingline of two rational vetors is generally non-rational, beause some square rootis involved to solve the underlying quadrati equation. In ontrast, the bisetorof a segment joining two rational points does not require a square root and is arational onstrution.Let us now onsider 3D problems. As shown by Steinitz's theorem [36℄, every3D Eulerian polyhedron (i.e. ful�lling Euler-Poinaré's formula: V − E + F =
2, where V, E, F are the numbers of verties, edges and faes) is realizablewith a 3D onvex polyhedron with rational oordinates only (thus with integeroordinates only, after some saling). A ubi time algorithm omputes a Tuttebaryentri embedding of the planar graph7 of the polyhedron, then lifts vertiesin 3D [36℄. In ontrast, 4D polytopes (onvex polyhedra) are generally notrealizable with integer oordinates only [36℄. Less is known for 3D non-Eulerianpolyhedra (i.e. with through holes, suh as a torus). However, in spite of theirintelletual appeal and of the fat that some of them have a known omplexity,these problems are seldom seen in CAD/CAM designs. Thus, the impossibilityto handle them is only a meager shortoming of our method.8. ConlusionAfter proposing a way to generate a witness, we showed in this paper howthe witness method ould be used to detet over-onstrained systems withoutany additional omputational ost by an inremental Gauss-Jordan eliminationof the Jaobian matrix at the witness. This allows the omputation of a well-onstrained boundary inside the deomposition method.We propose algorithms to validate anhors, i.e. hek that �xing the positionof a subset of the oordinates of the geometri elements �xes all oordinates. We7Eah vertex is the baryenter of its neighbors, exept for three outwards base verties.34



gave algorithms to identify all maximal well-onstrained subsystems of a GCS,i.e. the system itself if it is well-onstrained, or its G-well-onstrained parts ifit is artiulated.From this algorithm, we dedued a skeletonization algorithm, allowing toompute a minimized version of the GCS, with the same degrees of freedom,based on the replaement of maximal G-well-onstrained subsystems with theirboundary. We also dedued a method, alled W-deomposition, to deomposea G-well-onstrained GCS into the set of all its non-trivial G-well-onstrainedsubsystems, based on the removal of a onstraint and the omputation of thenew maximal G-well-onstrained subsystems.The method to detet over-onstrainedness is e�ient (the omputation ofthe redued row ehelon form of the Jaobian matrix is in O(min(m, n)mn))and is not triked by mathematial theorems, even when these theorems areunknown to the developer. The deision algorithm for the validity of an anhoris in O(m2n). The MGS identi�ation is also e�ient (O(m2n)) and works in2D or 3D. W-deomposition is performed in O(m3n) in the worst ase.For oniseness reasons, the algorithms we desribed work on 2D systems,but they an be easily extended to 3D systems. The main di�ulty to implementour algorithms is the omputation of the Jaobian matrix and its manipulation,but there are many development libraries whih an do it both e�iently androbustly. Our algorithms are thus easy to implement. Complexity of the algo-rithms is independent of the dimension. Even though this omplexity is ubi,we believe that it is not an important drawbak, thanks to the inrementality ofour algorithms, allowing the developer to use idle user time for omputations.As it is, the method has been implemented and tested on several examples.However, some work ould be done in order to improve its e�ieny and itsrobustness. For instane, the in�nitesimal �exions are disovered by omputingthe kernel of F ′(X, A) on a witness, this alulus an be on�rmed by usingthe Hessian matrix of eah equation of the system. The nullity of the produt−→
V tH(X, A)

−→
V should on�rm or in�rm this fat: ontradition would mean thatour witness is not generi and small perturbations ould be used to remedy thissituation.Sine reliability of the witness is a ruial point in our method, the previ-ous point an re-reinfore the on�dene we have in the witness. Some othertraks an be explored, like omputing a witness ful�lling exatly the booleanonstraints (inidene onstraints, equality of distanes, et.): that is solvingonstraint systems modulo the group of the projetive transformations.Another di�erent approah ould onsist in turning the parameters into vari-ables and apply the method as it is. That way, the relationships between pa-rameters ould be deteted and the �exions ould be quantitatively estimated;this ould be useful for engineering studies.Further researh needs to be done in order to have e�ientW-deomposition.The example of Figure 15 shows that some edges are better than others for theremoval (line 2 of Algorithm 8). Some promising traks are the omputation ofa minimum hain overing and the searh for onstraints whih appear in only35



a few hains, or methods based upon matroids intersetions.Those enhanements of the W-deomposition method would not modify theomplexity of the algorithm. A multi-groupW-deomposition algorithm is morepromising: Algorithm 8 works on any transformation group whih ful�lls theonditions ited in Setion 5.2, but only one suh group at a time. To estab-lish a multi-group algorithm, i.e. an algorithm deomposing a system into its
G1-well-onstrained subsystems, then automatially swithing to another group
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