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Abstract
The data model of an application, the nature and format of data stored

across executions, is typically a very rigid part of its early speci�cation,
even when prototyping, and changing it after code that relies on it was
written can prove quite expensive and error-prone.

Code and data in a running Lisp image can be dynamically modi�ed.
A MOP-based persistence library can bring this dynamicity to the data
model. This enables to extend the easy prototyping way of development
to the storage of data and helps avoiding interruptions of service. This
article presents the conditions to do this portably and transparently.

1 Introduction
Many applications provide a continuous service but cannot guarantee that they
will run continuously. These applications must serialize and write part of their
state to be able to restore it when they are executed again. Some of these
applications are designed to run continuously but one cannot avoid to shut them
down occasionally, e.g. because of hardware failure, maintenance or software
updates, like network servers. Others are only needed part of the time and are
designed to be executed only then, like accounting software. Occasionally an
application is designed to be executed in a short time and only handle user input
and hardcoded data but, as the use conditions evolve, it becomes necessary to
stop its execution and be able to resume it later.

The developer must guarantee that a saved state will be readable and that
the application will be able to e�ectively resume its execution, which creates a
rather inconvenient set of requirements:

1. the format used must be able to represent arbitrary data

2. the format used must have an unambiguous syntax

3. the format used should be parsed e�ciently

4. stored data must be kept synchronized with the code handling the state
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5. the nature and structure of data must be able to evolve

Note that the �fth requirement actually implies a sixth corollary require-
ment: any data stored before a change in data structures has to be migrated
from the older to the newer structures.

We can observe that the �rst three requirements are rather easily solved
by well-known solutions produced by the �elds of parsing and databases man-
agement. Yet, since it includes the fact the organization of data and code may
change, the complete set of requirements constitutes a much harder problem [5].

This ability of an application to exhibit the behaviour of a continuous exe-
cution even when its execution is actually discontinuous is what one calls per-
sistence. We will show how a library using the MetaObject Protocol (MOP) of
Common Lisp can provide persistence at the cost of practically no e�ort from
the developer, and ful�ll the mentioned requirements. We will also show under
which conditions such a transparent addition to the application can be made
portably with the MOP.

The rest of this paper is organized as follows: section 2 shows the bene�ts
of a dynamic data model; section 3 describes other approaches to make an
application persistent; section 4 details the requirements and issues of a portable
MOP-based transparent persistence library; section 5 shows how such a library
integrates the data model in classical uses of Lisp dynamicity; section 6 sketches
our use of a persistent library and how the library could be enhanced to better
�t our requirements.

2 Data model �exibility spectrum
We will now inspect the design space of the solutions ful�lling those requirements
according to their �exibility, from the most rigid to the most �exible.

The easiest solution is to build the data model and set it in stone before
any code handling the data is written. This solution is widely used because
it seems to dodge the issues of synchronization and migration of data. But
when this fails because the data model has to be changed nonetheless, this
solution back�res severely: the data model presumed immutability encourages
tight coupling between the code and data structures holding serialized data as
well as �ne tuning of the format, both at least for optimization; thus any change
typically proves to be not only very costly, as many code portions have to be
changed, but also very error-prone, as the lack of abstraction makes it easier to
miss code that had to be updated.

Between this solution and the next one in the spectrum of �exibility, there
is a wide range of solutions using a more or less well de�ned API to abstract
the access to serialized data. Although they are obviously better than an ad hoc
code, they actually only avoid the coupling between the code and the format
used to serialize data. The developer still has to ensure that code and data are
consistent and data is migrated to newer structures.

To avoid this burden, a solution is to de�ne both in-memory and serialized
data structures from the same source. This is typically achieved by using a
Domain Speci�c Language (DSL) [12] for the purpose, from which code is com-
piled that deals with data structures to create them, access them, write them
and read them back when needed. This is a widely used solution in the Java
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world, as seen in projects such as JBoss Hibernate or Oracle TopLink and as
speci�ed in Sun's JDO.

This doesn't solve the migration issue in itself, but makes it possible to do
so: when data structures are de�ned this way, it becomes easy to develop an
automatic tool which, given the older and the newer de�nitions, migrates the
data. Still, this solution has all the classical problems of a DSL [11]: it is a
non-trivial issue to get the DSL right, in term of expressiveness, and the more
expressive it is, the more the developer has to learn to use it. It moves the burden
from having to keep things up to date to learning a new language, which is a
step forward, but not a complete solution. Moreover, depending on the DSL,
the developer could want to move on to a data model that cannot be expressed
with the DSL. This could force the developer to stop using the DSL, and rebuild
everything from scratch. If he later discovers that with further modi�cations,
he can use the DSL again, mental care may blow the budget.

Because of the remaining burden that learning and using a DSL for data
model de�nition imposes, an interesting solution is the use of a persistence
library. A persistence library basically provides code to serialize arbitrary data
structures used in an application. But having to call such a library explicitly
both cripples the code and is a source of hard to �nd bugs (because they can
manifest themselves from obsolete data, typically causing subtly wrong results).
The programming language implementation is able to call the persistence library
safely, ensuring data is properly deserialized before read and serialized after
write, and the easiest way to leverage this ability is the use of a transparent
persistence library, which should provide access to persistent data structures
with the same syntax used to access built-in data structures.

In the case of a portable transparent persistence library, if the semantics
of persistent data structures are consistent with the semantics of built-in data
structures, it may be possible to turn an application into a persistent one merely
by activating persistence (that is, opening a store and initializing it if necessary)
and declaring some objects persistent (either individually or for the extent of
some class). This even makes it possible to use the same application in a tran-
sient or persistent way according to the conditions.

We will show that Common Lisp's MOP provides precisely the framework
needed to portably implement a transparent persistent library for an object-
oriented application.

3 Related works
Making an application persistent can be achieved from within the application,
which is our approach, or by orthogonal persistence, that is persistence provided
outside the application.

Orthogonal persistence has been a research area in OS design and has been
implemented in systems such as KeyKOS [16], EROS [24] or Coyotos [22], where
it simpli�es security reasoning [23] as well as provides system-wide backup, fail-
over support and extremely short restart times [7]. OS-wide orthogonal per-
sistence also typically avoids the implementation di�culties of non-orthogonal
persistence, as no serialization actually takes places: with the appropriate de-
sign, memory pages can be stored as-is and restored without modi�cation. Thus
it is typically both very �exible and e�cient, albeit absolutely not portable, but
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tied to a speci�c system architecture.
When not provided by the OS, orthogonal persistence can be provided by

the programming language implementation. The �rst language to do so was
PS-Algol [3, 10], where persistence was demonstrated to provide, along with
closures, a su�cient basis to implement modules or separated compilation [1,2].
With the intent to exhibit Common Lisp's virtues with the additional bene�ts
of persistence, a persistent implementation of Common Lisp, UCL+P [13, 14],
was designed. While providing a great �exibility, orthogonal persistence at the
language level also ties a design to a speci�c system. Though the language
implementation may be portable, the application in itself isn't.

In Common Lisp particularily, persistence has been an active �eld with vari-
ous libraries. As Common Lisp is favoured by its users for its �exibility, vendors
provide transparent persistence for their implementation, like Statice for the
Genera OS used on Lisp Machines or AllegroCache for Allegro CL.

The MOP makes it possible to provide transparent persistence with portable
code. The PCLOS library was written with the intent to demonstrate this possi-
bility [17�19], though this library doesn't enable class redi�nition for persistent
classes. Adding transparent persistence, although arguably di�cult to imple-
ment comprehensively and e�ciently, is even a classical example of MOP use [9].
Not all MOP-based persistence libraries handle the storage themselves, though:
PLOB!, for instance, relies on an object-oriented database coded in C to store
persistent objects.

While most persistence libraries o�er the ability for the application to op-
erate on a data set possibly larger than memory, some, for the sake of speed,
take the approach of prevalence [6], where all the data set is present in memory,
like CL-Prevalence or BKNR. While providing speed and simplicity, prevalence
is of interest only in a limited subset of the persistence use cases.

4 Implementation issues
This section presents the requirements of a portable implementation of a MOP-
based persistence library enabling our approach.

4.1 Language requirements
The implementation can be divided in two major parts, the serializer and the
transparency mechanism.

The serializer is conceptually a bijective function that maps objects of the
programming language to their representation as a byte string; the deserializer
is its inverse. Its implementation includes the following components: a serializer
for built-in types of the language and one for user-de�ned data structures.

The serialization of built-in types has very few requirements: only polymor-
phism is actually needed. In a statically typed language, early binding should
be able to dispatch to the relevant serialization function. If the statically typed
language allows type-unsafe data to be used � like references cast to void point-
ers in C or C++, serialization might not be possible in the general case. In a
dynamically typed language, late binding or type information will be necessary.

Some types may be impossible to serialize at all, or at least portably. With-
out detailed metadata, references to services of the host OS will not be serial-
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izable � e.g. a �le handle without the �le's path. Even with proper metadata,
serialization of such types may be inaccurate: the services exposed through the
reference might have their state modi�ed when the application is not running
and thus impossible to receive noti�cation. Deserialization of these types might
need to raise exceptions and try and simulate such noti�cation.

Executable code is also a source of di�culty for serialization, as functions
or procedures are typically opaque objects. Persistent closures, though, have
been shown to be particularily interesting [1,2]. As knowing wether a procedure
is serializable without any other ability than to execute it is undecidable, one
needs a facility from the language: either metadata from which the procedure
can be rebuilt � e.g. its source code � or inspection of its code.

Serialization of user-de�ned types is built on top of serialization of built-
in types, with re�ection. That is, the serializer must be able to inspect the
components of any user-de�ned object. The serialization then consists in the
identi�cation of the user-de�ned type and the serialization of each component.

Thus, the basic requirements for serialization are some kind of polymor-
phism, depending on the type system of the language, and re�ection for com-
pound data. Some built-in types may need speci�c facilities to be serializable.

Another concern is object identity preservation. As classical solutions have
some e�ciency issues, this is still an open problem, coined the object identity
crisis by Henry Baker [4]. The interested reader may refer to [15,25].

The transparency, on the other hand, has requirements met by fewer lan-
guages. There are two possible approaches to add transparent persistence.

The �rst one is to use proxy objects, which are objects that mediate any
access to the proxied object and serialize and deserialize it according to the
type of access. They are only possible when the language provides user-de�ned
implicit conversion operators. C++, for instance, provides them, but with the
restriction that in any chain of implicit conversions, only one can be user-de�ned.
For instance, it would be impossible to make transparently persistent objects
that are already made transparently versioned with the same method.

Another approach is the use of alternate data structures that exhibit the
same interface. This is the approach of a MOP-based persistence library as well
as of solutions alike, though those solutions typically restrict themselves to user-
de�ned types. That is, though all types are serializable, transparency is limited
to user-de�ned persistent types. ZODB, a transparent persistence library for
Python, takes this approach but, as Python lacks a MOP, uses so-called Exten-
sion Classes implemented in C++. To be the least intrusive possible, the class
de�nition syntax should be identical for transient and persistent classes, with
the exception of persistence.

4.2 Library requirements
Beyond transparent persistence, a MOP-based library needs to ful�ll some spe-
ci�c requirements to provide a solution to our problem. In all aspects of CLOS
� Common Lisp Object System, persistent objects must exhibit a behaviour
consistent with equivalent transient objects. Speci�cally, two classes, de�ned
by the same defclass form but for the persistence metaclass and persistence
options, must have the same behaviour, except for MOP-related operations.

Care must be taken that instance creation and initialization and instance
deserialization don't interfere, as CLOS explicitly provides generic functions as
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mechanisms for controlling initialization. If methods have been de�ned for these
generic functions, the persistence library must ensure that they will be called
according to standard CLOS semantics.

Class rede�nition also constitutes an important issue in itself. As class redef-
inition needs to operate on the extent of a class, it has an O(n) time complexity
on the number of instances of the class. Depending on the size of the data
set, if rede�nition takes place entirely before any other operation can happen,
it could slow the application prohibitively and cause IOS itself, which defeats
one of the very purposes of using the library. Concurrent or lazy updates of
the instances are possible solutions. In any case, persistence of closures will
be necessary for the data to remain consistent, if user-de�ned methods are
de�ned for the generic functions update-instance-for-redefined-class or
update-instance-for-different-class.

5 Using the MOP-based persistence library for
dynamicity

Common Lisp includes a number of features that make it particularily suited for
rapid prototyping [20]. Prototyping is the gradual building of an application,
with the intent to learn from the working implementation. To do rapid prototyp-
ing, one needs to be able to build each successive version of the prototype at the
least e�ort, which means being able to make small incremental changes: small
incremental additions and small incremental modi�cations. Those incremental
changes are made possible easily and e�ciently by the interactive nature of the
Lisp image: within the Read-Eval-Print Loop (REPL), without going through
a whole edit-compile-link cycle with compilation units as big as entire �les, one
can:

• add or replace a function or method, possibly compiled on-the-�y,

• execute arbitrary code, also possibly compiled,

• add a new class de�nition,

• rede�ne an existing class, which updates all its existing instances.

Persistence �ts nicely in this scenario with a MOP-based persistence library:
the data model is expanded by adding a new persistent class and modi�ed by
rede�ning an existing persistent class. The developer can experiment interac-
tively with the way data will be stored, create persistent data and test its code
against it at a high rate, without any overhead.

The data model no longer needs to be designed entirely before being usable.
Parts of it can be gradually built as persistent classes, and any perceived mistake
showed by experimentation can be corrected either by de�ning another class and
switching existing instances of the deprecated class to it or by rede�ning a class,
like when it comes to add properties to existing objects, which is easily done by
rede�ning their class with additional slots. If code has not yet been written to
use these new slots, the application will even continue to work as before; if code
has been written which uses the condition system to deal with unbound slots,
the new slots of existing instances can be updated gradually also. This can save
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the developer a lot of time if he quickly decides to remove some of the new slots,
for instance if using them a few times showed their addition was a bad design.
This is exactly the kind of bene�t in productivity that rapid prototyping can
exhibit.

As far as rapid prototyping is concerned, a MOP-based persistence library
can also be helpful in a variety of applications regardless of their use of persistent
data. Testing an application typically involves using it with a rather complex
data set which is more able to show bugs than a simpler one. The problem is,
building this data set again and again � especially when it's a complex graph
of objects � because it's lost each time the test application is shut down can
quickly become tedious. Making this data set persistent, even if it's not meant
to be used persistently in production, makes it available in each test run of the
application, with little e�ort.

In any case, when the need to make complex modi�cations to the data arises,
the developer has the full programming language available for the task. Whether
he needs to do modi�cations within an unchanged data model or migrates data
when the data model is changed, he su�ers no restrictions on how to express the
change and on the possible side-e�ects. This could be some code executed from
the REPL directly that would never be used again or factored into a function
to be reused later.

The full availability of the language also means that a migration operation is
not restricted to data manipulation. Operations like logging or visual rendering
of the operation could be added in the code that does the migration. Statistical
data could also be extracted.

In production systems as well, Common Lisp shows some rare abilities that
come from its dynamicity. In particular, its interactive nature makes it possible
to update a running application. This not only minimizes interruption of service
(IOS) for software updates, but avoids it fully, provided that the new code is
correct. With some infrastructure, rollback and versioning of running code could
even be possible. Coupled with automated migration tests [21], this is a great
opportunity to avoid a major source of problems in software upgrades.

A MOP-based persistence library makes it possible to update the data model
of a running application. As long as the update process is safe and e�cient �
which can be achieved through lazy updates of existing objects [8], this update
can be made without any IOS.

6 Experiments and further works
We used the approach described in this paper for the implementation and de-
ployment of a Web-based catalog for real estate. The application was �rst pro-
totyped, not as a series of independent versions but as a single long-running pro-
totype, incrementally modi�ed to �t the functional requirements of the project.
The data model, in particular, evolved through the lifetime of the prototype. In
our case, not only did the use and implementation of the prototype give feed-
back that led the data model to be modi�ed but the client also expressed new
or changed requirements.

Without the use of a transparent persistence library, the development of
the prototype would not have been possible within the tight time and budget
constraints of the project. Moreover, without being concerned by data storage,
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the work was entirely spent developing and debugging code that implement the
logic of the application itself, rather than its supporting infrastructure.

Because of the time constraints of the project, a version of the prototype was
asked by the end user to be deployed and used early on. As the development was
still taking place, the ability to migrate existing data to the various evolutions
of the data model without neither corrupting it nor having to write migration
code proved to be absolutely critical.

As a result, once deployed, the system was able to run without any inter-
ruption despite the fact that in the meantime its code was heavily modi�ed as
was the mere structure of the data it was holding.

The persistence library we use is Elephant, a very high quality MOP-based
library with pluggable storage backend. Yet Elephant doesn't already ful�ll all
requirements described in this paper. In particular, some of these requirements
have been devised as we encountered inconsistencies between the expected be-
haviour of our classes and the one showed by Elephant's persistent classes.

For example, a persistent instance, when deserialized, is allocated by be-
ing recreated with the make-instance function. As one of our classes had
an :around method de�ned for initialize-instance with side-e�ects, those
where randomly triggered as deserialization occured, instead of only once, at in-
stance creation. It is worth noting that the needed modi�cations of the library
are in fact relatively easy.

The inconsistency of peristent objects initialization, with respect to transient
objects, was encountered as follows. Photographs of products were stored by
the application as separate �les, along with resized versions, each in numbered
�les (1.jpg, 2.jpg, etc. . . ). When a photo was added to a product, an object
was created with the original photo's �le name in a slot. An :around method
for initialize-instance was responsible for the creation of the thumbnail
images. Their �le names were stored in slots of the object. If the application
was a Lisp image running without interruption with transient objects, such �le
creation would only occur once for each photo. But with persistent objects
as they are implemented in Elephant, the initialize-instance method was
called during object deserialization, and spurious �les were created randomly.

Class rede�nition also remains a weak point for the library, with respect
to our speci�c requirements. As the library doesn't include the mechanism to
ensure that instances currently not deserialized were updated, this had to be
triggered manually. This aspect, though, being still an active �eld of research,
will need decisions about the tradeo�s of the implemented solution. Selectable
class update mechanisms would provide a very high degree of �exibility and
make it possible to better �t the application requirements.

In our speci�c case, an easy workaround was possible, as all instances were
always reachable from in-memory data structures, mostly lists. After class redef-
inition, all that was needed was to map a function that ensured class migration
on the containing lists.

7 Conclusion
We have shown how some qualities of Common Lisp, and in particular qualities
that together are a speci�city of Common Lisp � a dynamic nature enabling hot
update of many of an application's components, can be extended to a domain
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where they initially don't apply. We have seen that such an extension can be
made totally transparent for the developer. We have also shown that Common
Lisp, along with the MOP, provides such a high degree of �exibility that this
extension can be made portably. Although the MOP isn't itself included in the
Common Lisp speci�cation, it is a widely provided extension of CLOS.

It is worth noting that a persistence library can �nd other interesting use
cases. In particular, in the case of an application used to edit �les in a speci�ed
format, the data describing a �le might be incorporated in the serialized state
to provide faster access to it. It may be stored in its canonical format only when
really needed � e.g. a working copy or a temporary backup of a text document
might be faster to read and parse as part of the serialized state than in the
standard format used to communicate documents. Also, when two applications
make a consistent use of identical classes and the serialized state is stored in a
�le, a persistence library could also easily provide an ad hoc �le format.
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