
A formalization of geometric constraint systems

and their decomposition

Pascal Mathis1,2 and Simon E.B. Thierry*1,2

1Université de Strasbourg, Strasbourg, France
2LSIIT, UMR CNRS-UdS 7005, Strasbourg, France
Corresponding author: simon.thierry@unistra.fr

June 6, 2009

Abstract

For more than a decade, the trend in geometric constraint systems solv-
ing has been to use a geometric decomposition/recombination approach.
These methods are generally grounded on the invariance of systems un-
der rigid motions. To decompose further, other invariance groups (e.g.
scalings) have recently been considered.

Geometric decomposition is grounded on the possibility to replace a
solved subsystem with a smaller system called boundary. This article
shows the central property which justifies decomposition, without assum-
ing specific types of constraints or invariance groups. The exact nature of
the boundary system is given.

This formalization brings out the elements of a general and modular
implementation.

1 Introduction

Solving geometrical 2D or 3D constraint systems is a key functionality in most
CAD software. It aims at yielding a figure which meets some metric require-
ments (e.g. distances between points or angles between lines), usually specified
under graphical form. Solutions are returned as coordinates of the geometric
entities (points, lines, and so on), either directly or indirectly by using a con-
struction plan.

There is no general and complete method, but there exist many different ap-
proaches to solve the geometric constraints satisfaction problems. On one hand,
through algebraic methods, the geometric nature of the problem is hidden and
an equation system is solved, either with numerical methods [LM96a, LLG81]
or with symbolic ones [Kon92, GC98] (which are not really used in CAD due
to their exponential complexity). On the other hand, geometrical methods are
based on well-known geometrical constructions. A locus method with some
appropriate extensions [GHY02] is often applied and implemented as a graph

1

simon.thierry@unistra.fr

P

P

P

c) Subfigure S

2

2

2

2

P

P

P

a) Dimensioned sketch b) Subfigure S

1

1

1

1

Figure 1: Decomposition for solving

analysis [LM96b] or a rule-based system [Ald88, Brü93, JAS97, Kra92, Sch94].
To the contrary of numerical methods, if a GCS has multiple solutions, geomet-
ric methods can often provide them.

For more than a decade, the trend to deal with large systems has been to
make use of a divide and conquer approach [Sun86, VSR92, Owe91, DMS98,
GLZ06, Sit06]. The different subproblems can be solved either by algebraic
or geometric methods. The decomposition of geometric constraint systems has
become an important part of a solver architecture, since it helps to reduce the
complexity of the problem for algebraic solvers, and allows geometric solvers to
deal with problems that they could not handle otherwise.

This approach can be bottom-up : first a decomposition is performed and
then solvers (equational or geometric) yield solutions for subproblems. It can
also be top-down : solvers can not give solutions for the overall problem but
can provide solutions for subproblems, then, subsolutions are combined. For
a detailed study of existing decomposition methods, the reader may refer to
[JTNM06].

In the dimensioned sketch of figure 1a, no basic geometric construction can
help to solve the whole system. But if one uses a decomposition/recombination
mechanism, the constraints can be easily solved with some basic geometric con-
structions. First, the leftmost triangle, subsystem S1, is built (Figure 1b) in a

2

local coordinates system. Next, this triangle is removed from the system and
replaced with the distance between P1 and P2 which can be computed in S1.
Then, the remaining system, subsystem S2, shown in figure 1c can be geomet-
rically built. And finally, S1 is added to S2 by relaxing what we call its local
reference and computing the right transformation.

Thus, according to a solving strategy, some subsystems are computed and
solved in local coordinates system. New information is brought to a remaining
system and then subsystems are assembled. We call these new pieces of infor-
mation the boundary system. References correspond to temporary constraints
that must be relaxed to assemble subsystems.

This example illustrates the notions used in decomposition : subsystems, ref-
erences and boundary systems. As shown in [SM06], these notions are related to
the invariance group of subsystems (rigid motions in 2D for the example above).
Although most methods only consider transformations that are invariant under
rigid motions, the use of several transformation groups allows to further decom-
pose and thus enlarge the class of systems solvable by the means of geometrical
methods. This is the idea underlying the work of [SS06] in 2D (with rigid
motions and similarities) as well as the work of [vdMB08] in 3D (with rigid
motions, similarities and assemblies of systems invariant under scalings, called
radial cluster).

The central result of this article is about the justification of the decompo-
sition mechanism: if a system S is well-constrained modulo a group G, and if
subsystem S′, well-constrained modulo G′, is solved, with G ⊂ G′, then by con-
sidering information from the boundary B of system S ′, the remaining system
S − S′ + B is well-constrained modulo G.

In order to get to this result, it is mandatory to separate the syntactic aspects
of geometric constraint systems (set of terms) and the semantic ones where a
geometric constraint system is considered as a set of geometrical figures.

Usually, decomposition algorithms are presented for a particular implemen-
tation (types of the geometric entities, types of constraints). One or several
decomposition schemes are shown. Yet, in order to reach the general justifica-
tion mentioned above, we give a semantic definition of the boundary. It is then
necessary to show that is it constructible in the chosen implementation.

As a corollary, the formalization we propose by clearly separating syntax
and semantics allows to bring out the elements and data types for a really
modular implementation and add new types of constraints, objects and solvers
in a multi-solver and multi-group architecture. The paper gives hints for a
modular implementation and outlines our implementation.

The rest of this paper is organized as follows. Section 2 exposes the geomet-
rical framework, constraint systems and solutions (figures). Section 3 describes
how transformation groups take place in constraint systems and gives simplifica-
tions that come from well-constrainedness of CAD problems. Section 4 presents
the elements of a multi-solver architecture to get a modular implementation.

3

2 Syntax and semantics of geometric constraint
systems

A drawing specification is a statement consisting in a set of properties that the
drawing must fulfill. A general way to define a statement is to consider it as a set
of first order logic terms. These terms are associated with a geometric meaning.
Thus, statements have two aspects : syntax and semantics. Constraint systems
capture the syntactic aspect whereas geometric figures express the semantic one.

In this section, we provide a formalization of geometric constraint systems.
We first explain what is a geometrical universe (section 2.1), then detail the
syntactic (section 2.2) and the semantic aspects (section 2.3) of geometric con-
straint systems solving.

2.1 Geometrical universe

The framework for describing constraint systems and figures is a pair (Σ, E)
where Σ is a many-sorted signature and E the geometric model for interpreting
the variables. Such a pair is a geometrical universe.

Example 1. Consider the signature below :

sort
angle, length, point, line, circle

predicates
dist pp: point point length # distance between two points
angle ll: line line angle # angle between two lines
center : circle point # center of circle
tangency cl : circle line # line tangent to circle
on pl : point line # incidence of line and point

A model could be the Euclidean plane, E2, with the classical interpretations :
this universe has the carrier R2 for sort point, the sort line is interpreted by
the set [0, π[×R+ for the angle from x-axis and distance from origin, and the
sort circle by the set R2 × R+∗ for coordinates of the center and a non-null
radius.

The predicate symbol tangency cl, for instance, is mapped to the set :

{(xc, yc, r), (a, d)| distpl (xc, yc, a, d) = r}

where distpl is the distance from a point to a line.
Such a framework is often extended by predicate symbols related to the usual

constraints encountered in CAD and the considered model to the Euclidean 3D
space E3.

4

2.2 Constraint systems

2.2.1 Definitions

A constraint system is a conjunction of relational terms built on a set of sorted
variables. Logical variables are either unknowns or parameters of the geometric
statements.

Definition 2.1. constraint system : Let Σ be a many-sorted signature. A
constraint system is a tuple S = (C, X, A) where C is a set of predicative terms
built on Σ. X and A are two disjoint ordered sets of sorted variables of Σ, such
that arguments appearing in C are either in X ∪ A or constants of Σ. X is the
set of unknowns and A the set of parameters of the constraint system.

For a set of constraints C, vars(C) stands for the logical variables involved
in C.

For the sake of understanding, unless mentionned otherwise, examples will
be built on the signature of example 1 with 2D Euclidean space as carrier. Yet,
results do not depend on this geometrical universe.

Example 2. The statement represented by the next figure is the constraint
system below.

P3

P1 P2

L3
L2

L1

k2

k1

a1

unknowns

P1, P2, P3, L1, L2, L3

parameters

k1, k2, a1

constraints

on_pl(P1, L1) on_pl(P2, L1)

on_pl(P2, L2) on_pl(P3, L2)

on_pl(P3, L3) on_pl(P1, L3)

dist_pp(P1, P2, k1)

dist_pp(P2, P3, k2)

angle_ll(L1, L3, a1)

2.2.2 Operations on subsystems

Constraint systems express statements. In order to formalize decomposition
principles, we describe subsystems, which are a key notion.

Definition 2.2. subsystem : Given a constraint system (C, X, A), a subsys-
tem S1 of S, denoted by S1 ⊂ S, is a constraint system (C1, X1, A1) where C1

is a subset of C. X1 and A1 are the set of unknowns and parameters appearing
in C1.

If two systems are based on the same signature, their addition or substraction
correspond respectively to union and difference of constraints sets.

Addition of constraint systems :

5

(C1, X1, A1) + (C2, X2, A2) = (C1 ∪ C2, X1 ∪ X2, (A1 ∪ A2) − (X1 ∪ X2))
When a variable is an unknown in one system and a parameter in the other

one, it is an unknown in the union.
Substraction (precondition : (C2, X2, A2) ⊂ (C1, X1, A1)) :
(C1, X1, A1)− (C2, X2, A2) = (C1 −C2, X1 ∩ vars(C1 −C2), A1 ∩ vars(C1 −

C2))

2.3 Figures

2.3.1 Definitions

The notion of figure gives semantics to constraint systems. Given a universe
(Σ, E), a figure is a map where logic variables of a constraint system are mapped
from Σ to E .

Definition 2.3. figure : Given a universe (Σ, E), for a map ρ from A to E
(with respect to carriers of sorts), a figure of a constraint system S = (C, X, A)
is a map fρ : X → E such that all constraints in C are satisfied when interpreted
in E . The set of all figures of S according to ρ is denoted Fρ(S).

Thus, a figure can be seen as a vector of couples where the first member is
an unknown and the second member is the set of coordinates. In what follows,
amongst all possible values for parameters, we only consider those maximizing
the dimension of the underlying variety i.e. degenerate cases (with a distance
equal to zero for example) will not be considered. For the sake of clarity in
notation, if values of parameters are not important, the set of figures of system
S will be denoted by F (S) or simply F when no confusion can occur.

Restriction of a function allows to define the notion of subfigure.

Definition 2.4. restriction : Let be two figures f : X → E and f ′ : X ′ → E
with X ′ ⊂ X and such that for all x ∈ X ′, f(x) = f ′(x). f ′ is the restriction of
f to X , this is denoted by f ′ = f |X′ .
f ′ is also called a subfigure of f .

The notion of restriction can be slightly extended to sets X ′ which are not
included in X by considering that f |X′ = f |X′∩X . Then of course, f |X = f .

For a constraint system S = (C, X, A), the set of solutions F could be
restricted to a subset X ′ of X : F |X′ = {f |X′ | f ∈ F}. Such a set contains
only subfigures of F .

If S1 = (C1, X1, A1) is a subsystem of S = (C, X, A), we have F (S)|X1
⊆

F (S1). Indeed, figures of F (S)|X1
meet all constraints of C1 but could also

meet constraints of C that are not in C1 and that involve entities of X1. This
relation says that if it is possible to find solutions of a subsystem, then some
subfigures may have not be considered in the building of the solution set of the
whole system.

6

2.3.2 Joint

A central operation is the joint of figures. This operation is useful for combining
subfigures but can be done only if a compatibility condition holds.

Definition 2.5. figure compatibility : Two figures f1 : X1 → E and f2 :
X2 → E with Xe = X1 ∩ X2 are compatible iff f1|Xe

= f2|Xe
. This equivalence

relation is denoted by f1 ≡Xe
f2.

In other words, two figures are compatible if the unknowns they share are
embedded in the same values. Two such figures can be joined. This semantic
operation corresponds to the syntactic addition of systems.

Definition 2.6. joint of figures : Let f1 : X1 → E and f2 : X2 → E be two
figures and Xe = X1 ∩ X2 with f1 ≡Xe

f2,

f1 ⊗ f2(x) =

{

f1(x) if x ∈ X1

f2(x) if x ∈ X2

The restriction preserves the joint operation. If f = f1 ⊗ f2, for any subset
X of X1 ∪ X2, f |X = f1|X ⊗ f2|X .

The joint operation is extended to sets of figures in the next definition.

Definition 2.7. joint of figure sets : Let be F1 and F2 two sets of figures,
with Fi containing figures fi : Xi → E . F1 ⊗ F2 = {f = f1 ⊗ f2 | f1 ∈ F1 ∧ f2 ∈
F2 such that f1 ≡Xe

f2}, with Xe = X1 ∩ X2.

Notice that if no couple of figures in F1 and F2 can be joined, F1 ⊗ F2 is
empty. This operation corresponds to combining subsystems after a decomposi-
tion process. One of the issues we deal with in this paper is to give a constructive
way for joint operation.

The following result shows the close link between addition of systems and
joining solutions of these systems.

Result 2.1. addition and joint : The solution set of a system S is the joint
of any two subsystems solution sets i.e. F (S1 + S2) = F (S1) ⊗ F (S2)

Proof. Let S = S1 + S2 be a constraint system with S = (C, X, A), S1 =
(C1, X1, A1) and S2 = (C2, X2, A2).

An element f ∈ F (S) can be written as f |X1
⊗ f |X2

. We obviously have
f |X1

∈ F (S1) because F (S)|X1
⊆ F (S1) and f |X1

is in F (S)|X1
. As f |X2

∈
F (S2), we have F (S) ⊂ F (S1) ⊗ F (S2).

Let us now consider a figure f ∈ F (S1) ⊗ F (S2). It associates values to all
elements in X . Assume that f is not in F (S), so there exists a constraint c ∈ C
such that f makes c false. But c is in S1 or in S2 and f makes all constraints in
these sets true. So the assumption that f is not in F (S) is false and f ∈ F (S).

Thus, we have the mutual inclusion : F (S) ⊂ F (S1) ⊗ F (S2) and F (S1) ⊗
F (S2) ⊂ F (S).

7

aa

...
...

P

P

k

P
k

P

P

k

S = S + S S

k

S

f

F(S +S)F(S)

f
f

4

3

21

5

2

1

2

1

1 2

2

F(S)

1

3

21 1 2

1 2

Figure 2: Joint of two subfigures

Example 3. In the Euclidean plane, figure 2 shows a constraint system S cut
into two parts S1 and S2. The dotted line expresses symmetry in the top trian-

gle. Infinite set F (S2) contains all possible triangles P3P4P5 where P̂3P4P5 = a
and segments P3P4 and P4P5 are of the same length. Infinite set F (S1) contains
all possible rectangles with dimensions k1 and k2. Figure f3 is a solution of S
and we have f3 = f1 ⊗ f2.

The restriction does not preserve the joint operation for figure sets except
in a specific case which is useful in decomposition.

Result 2.2. restriction and joint : For a system S = S1 + S2 with Xe =
X1 ∩ X2 where X1 and X2 are respectively unknowns of S1 and S2, for any
X ⊂ X1 ∪ X2, F (S1 + S2)|X = F (S1)|X ⊗ F (S2)|X iff Xe ⊆ X .

Proof. Let be f ∈ F (S1 +S2) such that f = f1 ⊗ f2, with f1 ∈ F (S1) and f2 ∈
F (S2). We obviously have f1|X ∈ F (S1)|X and f2|X ∈ F (S2)|X . Since we know
that f |X = f1|X⊗f2|X , we can deduce that F (S1+S2)|X ⊂ F (S1)|X⊗F (S2)|X .
Notice that this relations stands even when X 6⊂ Xe.

F (S1)|X ⊗F (S2)|X ⊂ F (S1 +S2)|X comes from the joint definition. Let be
f ∈ F (S1)|X ⊗ F (S2)|X with f = f1 ⊗ f2, f1 ∈ F (S1)|X and f2 ∈ F (S2)|X , f

8

is in F (S1 + S2)|X only if it fulfills the compatibility condition on Xe and that
is the case when and only when Xe ⊆ X .

Thus, we have the mutual inclusion iff Xe ⊆ X .

Example 4. In the previous example (example 3), it is easy to see that the
relation does not stand if Xe 6⊂ X . Indeed, in figure 2, point P1 is in S1 and
P4 belongs to S2. If P is the Euclidean plane, F (S1)|{P1,P4} = F (S1)|{P1} = P
and so it is for S2 and P4. The joint of F (S1) and F (S2) leads to all couple of
points of the plane, F (S1)|{P1,P4} ⊗ F (S2)|{P1,P4} = P2 whereas F (S)|{P1,P4}

contains all segments coming from projection of figures of F (S).

2.4 Boundary system

In a system S, a subsystem S1 has inner and boundary variables. Boundary
variables are linked by constraints to variables of S−S1 while inner variables are
only connected to S1 variables. For instance, in figure 2 (example 3), for sub-
system S1, boundary variables are {P3, P5} while inner variables are {P1, P2}.

Boundary variables were already encountered in compatibility relation. The
system they induced plays a large part in decomposition of subsystems since
the boundary system of a system S1, subsystem of S = S1 +S2 contains all the
information needed to retrieve F (S)|

vars(S2)
.

Definition 2.8. boundary system : Let S = S1 + S2 be a system with
S1 = (C1, X1, A1) and S2 = (C2, X2, A2). The boundary system of S1 with
respect to system S2 is the system BS2

(S1) = (Ce, Xe, Ae) with Xe = X1∩X2,
Ae = A1 ∩ A2 and F (BS2

(S1)) = F (S1)|(X1∩X2).

To enhance clarity of the notations, when the border of a system S1 is
computed with respect to a system S2 and when there is no ambiguity, BS2

(S1)
will be denoted simply by B(S1).

Note that the definition of the boundary system is semantical: there is no
guarantee that the signature allows to express the corresponding contraints.
This is discussed in section 4.1.4.

The following result is essential for decomposition. It shows that removing
a subsystem S1 from system S does not change the solutions of the remaining
system if the boundary system of S1 is added. In other terms, it proves the
validity of bottom-up decomposition methods: if the subsystem solvers are cor-
rect (i.e. yield only figures that satisfy the constraints) then the assembly of
the subfigures will yield valid solutions.

Result 2.3. boundary system and solution set : Let S = S1 + S2 be a
system with S2 = (C2, X2, A2). The restriction of F (S) to variables of S2 is the
solution of the system obtained by adding the boundary system of S1 to S2:
F (S)|X2

= F (S2 + B(S1))

Proof. Consider a system S = S1 + S2, with S1 = (C1, X1, A1) and S2 =
(C2, X2, A2). Boundary variables of S1 are involved in constraints of S1 and

9

constraints of S2, i.e. they are the set Xe = X1∩X2. We know that F (S)|X2
⊆

F (S2), because some constraints applied on unknowns of Xe could be present
in constraints of S1. So, subtracting S1 of S could remove constraints on X2.
The boundary system of S1 is the system such that F (B(S1)) = F (S1)|Xe

. As
Xe ⊂ X2, from result 2.2 we can deduce :

F (S)|X2
= F (S1)|X2

⊗ F (S2)|X2

= F (S1)|Xe
⊗ F (S2)

= F (B(S1) + S2)

Example 5. In example 3, X2 is the set {P3, P4, P5} and F (S2) contains all
triangles whose two segments are of the same length and angle between them
is fixed to parameter a. We can see that F (S)|X2

is the subset of F (S2) where
distance P3P5 of triangles is k1. F (S2) carries triangles that are not involved in
any solutions.

The set X1 is {P1, P2, P3, P5}. Boundary variables are Xe = X1 ∩ X2 =
{P3, P5} and F (B(S1)) contains all segments in Euclidean plane where length
is k1. Considering the signature of example 1, this set can be syntactically
expressed by the system B(S1) = ({dist pp(P3, P5, k1)}, {P3, P5}, {k1}).

Thus, S2 + B(S1) restricts S2 to triangles where opposite segment of angle

P̂3P4P5 has value k1. Notice that F (B(S2)) is just all possible segments since
boundary variables of S2 are {P3, P5} and the distance between these two points
is not set. Here, the relation is F (S)|X1

= F (B(S2) + S1) but the boundary
system B(S2) does not bring relevant informations since F (S)|X1

= F (S1).
That means that removing S2 from S does not impact on X1.

2.5 Decomposition

The decomposition of a constraint system relies on the “divide and conquer”
strategy. The constraint system is split into subsystems that a solver can handle.
The aim of the decomposition is the resolution of the global system more than
a decrease of complexity. Nevertheless, as the complexity of the resolution of
subsystems is the same as that of the global system, the total complexity of the
resolution is only divided by a constant.

Definition 2.9. decomposition : A decomposition of a system S is a se-
quence S1, . . . ,Sn such that F (S) = F (S1 + . . . + Sn) and S ⊂ S1 + . . . + Sn.

That is, decomposition is not only a partition of the constraints from S
since new constraints can appear in subsystem Si. Yet, if there are additional
constraints, they must be redundant with those from S. Obviously, a decompo-
sition is guided by semantics, since the interpretation of a sequence S1+ . . .+Sn

is the same as that of S.

10

3 Invariance under the action of a transforma-
tion group

Geometric constraint systems are usually considered well designed when they
are rigid and solvers often use the rigidity of a constraint system as an hypoth-
esis. Yet, a solution of a rigid system can still be moved without violating any
constraint. More generally, non rigid systems can be seen as well designed if the
user intended them to be scalable, for instance.

In this section, we formalize the notion of invariance under the action of
a transformation group and extend the joint operation to a joint operation
by transformation called transformation joint (section 3.1). Then, we extend
the classical notion of well-constrainedness to well-constrainedness modulo a
transformation group (section 3.2).

3.1 Transformation groups

In CAD, solution set F (S) is usually stable under some geometric transforma-
tions. Equivalence between figures with regard to some transformations nat-
urally leads to consider group structure of transformations because action of
group on figures induces an equivalence relation.

3.1.1 Group invariance, orbits

Definition 3.1. invariance by a group of transformations : A set of
figures F is invariant by a group of transformations G (or G-invariant) if for
any figure f ∈ F and any transformation ϕ ∈ G, ϕ(f) ∈ F .

For a group G and a figure f ∈ F , the set G.f = {f ′ | ∃ϕ ∈ G, ϕ(f) = f ′}
is the orbit of f . The set of orbits of F under the action of G form a partition
of F . The associated equivalence relation states that f and f ′ are equivalent if
there exists a transformation ϕ ∈ G such that f = ϕ(f ′). The orbits are the
equivalence classes of this relation.

The set of all orbits of F under the action of G is written as F/G and |F/G|
denotes the number of orbits.

If F (S) is invariant by groups G and G′, it is invariant by G ∩ G′ as well.

Example 6. Figure 3a shows the very simple constraint system of a triangle
where length of all three sides are given. Given values for parameters k1, k2 and
k3, figures 3b,c,d represents the solution set F (S) with different equivalence
classes according to the transformations group considered. In 3b transforma-
tions are translations, thus number of orbits is infinite. In 3c transformations are
direct isometries or rigid motions, so |F (S)/G| = 2. In the last case, Figure 3d,
there is only one orbit, all solutions are equivalent modulo isometries.

By extension, a constraint system S is said to be G-invariant if F (S) is so.
This brings a semantic notion (invariance of figure sets) to the syntactic side
(invariance of constraint systems).

11

b) F(S)/Translationsa) System S

Reflection

Rotation

...

c) F(S)/Rigid Motions d) F(S)/Isometries

k k

k

2
3

1

Figure 3: Orbits of system S considering different transformations groups

12

When a constraint system is G-invariant, F (S) can be characterized by a
set of orbit representatives Fr containing one figure per orbit. In other words,
F (S) = G.Fr .

Example 7. In the previous example, the set of solutions can be defined by
F (S) = G.Fr with G the group of rigid motions and Fr a set containing two
figures, one from each orbit of F (S)/G. This description is not unique, e.g.
F (S) could also be expressed with G the isometries and Fr a set including a
single figure meeting the constraints.

3.1.2 Joint and groups

Let us consider the cutting of a system S into S1 and S2 (S = S1 + S2),
S1 = (C1, X1, A1) is G1-invariant and S2 = (C2, X2, A2) is G2-invariant, with
Xe = X1 ∩ X2 the set of common unknowns. F (S1) and F (S2) are described
by a set of representatives, F (S1) = G1.Fr1

and F (S2) = G2.Fr2
. Thus, each

solution f ∈ F (S) can be written as f = ϕ1(f1)⊗ϕ2(f2) with f1 ∈ Fr1
, f2 ∈ Fr2

,
ϕ1 ∈ G1 and ϕ2 ∈ G2.

Given two representatives f1 ∈ Fr1
and f2 ∈ Fr2

, we note (Ψ1, Ψ2)f1,f2
⊂

G1 × G2 the set of couples (ϕ1, ϕ2) such that ϕ1(f1) ≡Xe
ϕ2(f2). So, each

element (Ψ1, Ψ2)f1,f2
allows to yield a solution of S. We then have

F (S) =
⋃

(f1,f2)∈Fr1
×Fr2

{f | f = ϕ1(f1) ⊗ ϕ2(f2) ∧ (ϕ1, ϕ2) ∈ (Ψ1, Ψ2)f1,f2
}

In this notation, G1 and G2 are assumed.
From G1 and G2, it is not possible to state the invariance group of F (S),

since it also depends on variables shared by S1 and S2.
Let us consider f = ϕ1(f1) ⊗ ϕ2(f2), with Xe the set of common variables

of f1 and f2. For each transformation ϕ′
1 ∈ G1 such that ϕ′

1(f |Xe
) = f |Xe

,
ϕ1(ϕ

′
1(f1)) ⊗ ϕ2(f2) is also a solution.

Example 8. Figure 4a depicts a constraint system S made of two triangles cor-
responding to subsystems S1 and S2 as shown in the figure. These subsystems
are invariant by rigid motions and share a common point, say P . Assume that
these triangles are solved separately, f1 is a representative solution of F (S1)
and f2 a representative solution of F (S2).

A solution f of S can be constructed by moving f1 and f2 so that P in each
subfigure has the same coordinates. It amounts to find a couple (ϕ1, ϕ2) such
that f = ϕ1(f1) ⊗ ϕ2(f2) with ϕ1(f1)|{P} = ϕ1(f2)|{P} (see figure 4b). Any
rigid motion ϕ′

1 leaving Xe = {P} unchanged (i.e. ϕ′
1(f1)|{P} = f1|{P}), leads

to another solution f ′ = ϕ1ϕ
′
1(f1) ⊗ ϕ2(f2) (see figure 4c).

This way of finding new solutions from a specific solution involves stabi-
lization of common unknowns. As usual, we note Gx = {ϕ | ϕ(x) = x} the
stabilizer subgroup of x in G. If f = ϕ1(f1) ⊗ ϕ2(f2) then for any g1 ∈ G1f |Xe

and g2 ∈ G2f |Xe
we have (g1ϕ1, g2ϕ2) ⊂ (Ψ1, Ψ2)f1,f2

. Note that G1f |Xe
is

13

p

a) b)

p
pf

p

c)

ϕ1

ϕ2

ϕ2

ϕ′

1
◦ ϕ1

ϕ′

1

f1

f2

S2

S1

f2

f1

Figure 4: Case of free rotation around a point

14

isomorphic to G1f1|Xe
since all stabilizers in a specific orbit are conjugate. This

leads to say that, in the previous example, rotation around point P can be done
either before or after applying ϕ1.

3.1.3 Bounded poset of transformation groups

More properties of joints come from a structure underlying the set of consid-
ered groups. In CAD, it is possible to gather transformation groups in a lower
bounded poset (partial ordered set) structure. The set of groups is partially
ordered by inclusion. In a lower bounded poset (H,⊆), there is a smallest ele-
ment G ∈ H such that for any G′ ∈ H, we have G ⊂ G′. In the case of posets
of groups, the trivial group made of the identity element can be this smallest
element and bound the poset.

If we have f ∈ (G1.f1) ⊗ (G2.f2), we know that there exists (ϕ1, ϕ2) in
G1×G2 such that f |Xe

= ϕ1(f1|Xe
) = ϕ2(f2|Xe). If we also have G2 ⊆ G1, the

transformation ϕ−1
2 ϕ1 is in G1 and can therefore be applied on f1|Xe. Hence

we have :
ϕ−1

2 (f |Xe
) = f2|Xe

ϕ−1
2 ϕ1(f1|Xe

) = f2|Xe

This situation is particularly interesting because it simplifies the expression
of (Ψ1, Ψ2)f1,f2

. First, we consider a release of joint operation including trans-
formation capability.

Definition 3.2. transformation joint : Given a geometrical universe and a
transformation group G, the transformation joint of two figures f1 and f2 is the
set :

f1 ⊗G f2 = {f | f = ϕ(f1) ⊗ f2, ϕ ∈ G}

At first, one may think that this definition introduces an asymmetry because
f1 ⊗G f2 6= f2 ⊗G f1, but it is trivial to show that f1 ⊗G f2 and f2 ⊗G f1 are
equivalent modulo G.

Next, we can see that the set of transformations ϕ ∈ G involved in ⊗G

operations is either empty (if f1 and f2 are not compatible) or isomorphic to
Gf1|Xe

with Xe the common unknowns of f1 and f2. Indeed, let ϕ and ϕ′ be
two transformations of G such that ϕ(f1)|Xe

= f2|Xe
and ϕ′(f1)|Xe

= f2|Xe
.

As G is a group, there exists ϕ′′ such that ϕ′ = ϕϕ′′.
ϕ′(f1)|X = f2|X so ϕϕ′′(f1)|X = f2|X . But ϕ−1(f2)|X = f1|X so ϕ′′(f1)|X =
f1|X .
Thus the set of ϕ in transformation joint is conjugate to G1f1|Xe

.
Assume that S is G-invariant and that a solver yields a G′-invariant substem

S1 with G ⊆ G′. We know from result 2.3 that the remaining system S2 = S−S1

is generally not G-invariant whereas F (B(S1)+S2) is since it is equal to F (S)|X2
.

Result 3.1. joint in a bounded poset of groups : Let be a G-invariant
system S = S1 +S2 with F (S1) = G′.Fr1

, F (B(S1)+S2) = G.Fr2
and G ⊆ G′.

15

Stating that

F =
⋃

(fr1
,fr2

)∈Fr1
×Fr2

fr1
⊗G′ fr2

we have F (S) = G.F

Proof. We argue by mutual inclusion.
G.F ⊆ F (S) is the correctness aspect i.e. the fact that the transformation

joint operation does not yield wrong solutions (solutions that are not in F (S)).
If we have f ∈ F then f = ϕ(fr1

)⊗ fr2
with fr1

∈ Fr1
and fr2

∈ Fr2
. As ϕ(fr1

)
is in F (S1), we have f ∈ F (S). The inclusion is rather obvious, it comes from
the definitions above.

F (S) ⊆ G.F is the completeness aspect, i.e. the fact that every solution is
in G.F . Consider a figure of F (S), f = f1⊗f2, and let fr2

be the representative
for the class containing f2. There exists ϕ ∈ G such that ϕ(f2) = fr2

. As F (S)
is G-invariant, ϕ(f) is in F (S). G contains ponctual transformations, hence
ϕ(f) = ϕ(f1) ⊗ ϕ(f2). We have ϕ(f1) ∈ F (S1), so there exists a representative
fr1

∈ Fr1
for the class containing ϕ(f1).

3.1.4 References

References are used to point out a specific figure in a set. First recall that the
action of group G is free if for any two different g and g′ in G and any f in F ,
we have g.f 6= g′.f .

In an orbit of figures G.f , a specific figure f ′ can be identified by giving one
of its subfigure f ′|X as long as G acts freely on G.f ′|X . If not, more than one
figure of G.f can contain f ′|X .

For instance, consider a system S describing a 2D triangle ABC defined by
the length of its three sides, it is invariant by G = rigid motions for instance.
Given coordinates for point A, there is an infinite number of figures satisfying
the position of A, all in free rotation around A. In terms of transformations,
this comes from the fact that rigid motions do not act freely on a point. If
we take now coordinates for point A and line (AB), only two figures meet the
length requirements, each figure being the reflection about line AB of the other.
But in any orbit of F (S)/G (here two orbits) G acts freely on figures.

Definition 3.3. reference : A constraint system R such that group G freely
acts on elements of F (R)/G is a G−reference.

If R is a reference of G and S is a system such that R ⊂ S, there is a one-to-
one map between F (R) and each elements of F (S)/G. A reference is generally
not unique, for example, the whole system S is obviously a reference.

Knowing references for each group will be mainly useful in implementation
to build specific figures (a representative of each orbit) and computing transfor-
mation by passing from a reference to another.

16

3.2 Well-constrainedness modulo a transformation group

In CAD, one usually assumes that constraint systems are rigid. Most solvers
can only deal with such systems and fail otherwise. Rigid systems are thus said
to be well-constrained. Yet, since these systems are invariant by rigid motions,
there is an infinity of solutions built by applying rigid motions on a particular
solution. Considering group invariance allows to alter the definition of well-
constrainedness and solve this discrepancy.

3.2.1 Definitions

Definition 3.4. G-well-constrained system : A constraint system S is well-
constrained modulo a group G (G-wc for short), if |F (S)/G| is finite and greater
than zero.

One can extend this definition to under-constrainedness : S is G-under-
constrained if |F (S)/G| is infinite; it is overconstrained if |F (S)| = 0, it is not
group dependant. Obviously, a system S can be well-constrained modulo several
groups. In example 3, the system is well-constrained modulo rigid motions (two
orbits) and also modulo isometries (one single orbit).

The definition induces some natural properties :

• for system S = (C, X, A) and X ′ ⊂ X , if F (S) is G-wc then F (S)|X′ is
G-wc

• if S is G-wc and G′-wc, S is G′′-wc with G′′ = G ∩ G′ and |F (S)/G′′| ≤
|F (S)/G| ∗ |F (S)/G′|

Note that for any system S, there always exists a group G such that S is G-
wc: the group of permutations of the solution set. Of course, finding this group
means knowing all solutions of S so this is not useful for solving or decomposition
methods.

3.2.2 Well-constrainedness joint

Decomposition of G-well-constrained systems is based on result 3.1. Let us take
a G-well-constrained system S. Suppose that a solver can only yield solutions
for a G′-well-constrained subsystem S1 included in S such that group G′ is taken
in a bounded poset structure with G as least element, i.e. G′ ⊆ G. Remaining
subsystem is S2 = S−S1+B(S1) and it is G-well-constrained since its properties
are the same as S. We saw in result 3.1 that F (S) = G.F with

F =
⋃

(fr1
,fr2

)∈Fr1
×Fr2

fr1
⊗G′ fr2

where Fr1
and Fr2

are respectively sets of representative for F (S1)/G′ and
F (S2)/G. Given two representatives fr1

∈ Fr1
and fr2

∈ Fr2
with Xe common

17

 invariant
 remaining part

c) Rigid motionsb) Scaling invariant parta) Sketch

Figure 5: Decomposition under similarities and rigid motions

unknowns of fr1
and fr2

, fr1
⊗G′ fr2

is either empty or isomorphic to G′
fr1

|Xe

/G.

As F (S) is G-well-constrained, G′
fr1

|Xe

/G is finite.

There are two cases to consider : either G′
fr1

|Xe

is finite or not. If S1 and

S2 share a reference, according to the definition of a reference, G′
fr1

|Xe

is finite.

If they share “less” than a reference G′
fr1

|Xe

could be infinite i.e. an infinite

number of transformations can be applied to join fr1
and fr2

. But in this case,
as S is G-wc, (G′

fr1
|Xe

)/G is finite and X2 = Xe.

Example 9. First, we consider an example where two subsystems share a ref-
erence for both groups. Let us use the example of figure 5 (p.18). This system
is D-wc (D being the group of rigid motions, also called SE(n) in nD). If sub-
system S1 is figure 5b, F (S1) could be S.Fr1

where S is the group of similarities
(rigid motions and scaling) and Fr1

the set carrying a single representative be-
cause |F (S1)/S| = 1. If fr1

is a solution for S1 and fr2
a solution for S2, there

exists a single similarity transformation ϕ such that ϕ(fr2
)|Xe

= fr1
|Xe

where
Xe are the two common points.

Then, let us take an example where common unknowns are “less” than a
reference. Suppose that S1 is D-wc and S2 is G-wc with G the group of the
rotations around point P , global system S is G-wc. Also suppose that Xe = {P}.
Given two representatives fr1

for S1 and fr2
for S2, there is an infinite number of

rigid motions ϕ such that ϕ(fr2
)|Xe

= fr1
|Xe

. However, all the figures obtained
by joining are equivalent modulo G as long as unknowns of S2 are only point
P , otherwise, there is a free articulation of fr1

and fr2
around P and S is not

G-wc. We see that amongst all possible rigid motions, any one can be chosen
to join any fr1

and fr2
.

18

So, in well-constrained cases, joining subsystems involves computing a fi-
nite number of transformations. This computation is straightforward provided
that two subsystems share a reference and that, for each group and each ref-
erence type, symbolic transformation from a reference to another one is given.
If common subsystem is less than a reference, a random transformation can be
chosen.

3.3 Decomposition under transformation groups

Generally, in the field of geometric constraints solving, a decomposition is to be
understood with rigid motions in mind : solutions of a subsystem are invari-
ant modulo rigid motions. With a multi-group approach, definition 2.9 can be
extended so that rigid motions are not implicitely considered.

Definition 3.5. decomposition under transformation groups : Given a
set of transformations groups G, a G-decomposition of a constraint system S is
a decomposition into S1, . . . ,Sn such that each Si is Gi-invariant, with Gi ∈ G.

This definition adds a semantic condition (invariance) to the syntactic de-
composition. In a specific geometrical universe, there are a lot of possible decom-
positions for a system. In terms of solving complexity they are not equivalent
but, by definition, they all lead to the same solutions.

4 Modular implementation

The formalization given in this paper leads to a general and modular implemen-
tation. In order to achieve this, the notions presented in sections 2 and 3 must
appear explicitly as elements of the implementation. After giving details about
the main components, a classical decomposition/recomposition algorithm is de-
scribed, where our operations on systems appear. We then show two commented
examples and finally discuss time complexity of this algorithmic scheme.

4.1 Elements of implementation

4.1.1 Geometrical universe, constraint systems and figures

The decomposition principles such as they were defined are not related to a
particular geometrical universe. To keep genericity, the geometrical universe is
not fixed but is a parameter of our architecture. The signature is described in
a textual file. After the analysis of this file, constraint systems based on this
signature can be entered. They appear as a conjunction of predicative terms.

Example 10. The left of the code shown in appendix A shows a description
of a geometrical universe in a pseudo-XML format called GCML and described
in [WSMF06]. In the following, this geometrical universe will be referred to as
UG. A 2D constraint system corresponding to figure 6 is given on the right of
the statement of appendix A.

19

100

50 p3

p

l

1

1

l

p

2

2

p4

30°

Figure 6: Graphical representation of the constraint system of appendix A

Semantics (i.e. the geometrical representation of the sorts and the evaluation
of the functional and predicative symbols) is also given in a textual way. Thus,
the same signature can be interpreted in various ways. This aspect is further
described in [WSMF06].

Constraint systems are tuples (C, X, A) together with their operations, such
as described in section 2.2. A figure is a map from the set of unknowns X to a
semantic domain (usually 2D or 3D coordinates). These maps are parameterized
by the set of parameters A.

In the current implementation, two syntaxic signatures could be used. The
first one allow to express 2D statements with points, lines, circles for entities
and distances, angles, incidences, tangencies for constraints. The second one
is used for 3D statements and also consider planes and spheres entities. These
signatures are combined with semantics needed by solvers : dof semantic, 2D
and 3D numerical semantics for real coordinates, invariance group semantic.

4.1.2 Groups hierarchy

To a given semantics, a set of groups together with a partial ordered relation
is attached. Usually, transformation groups are subgroups of a more general
invariance group and this set is lower bounded by the identity group. Figure 7a
shows an example of an ordered set of groups for a classical 2D semantics and
with similarities as most general group. In this figure, each box stands for a
group while dotted boxes represent families of groups.

The poset associated with a semantics is a hierarchy. For a G-invariant
constraint system with G belonging to the hierarchy, the lower bounded poset
from which invariance subgroups are taken is a down-set of G i.e. the subgraph
where G is the least element. For instance, with the hierarchy of figure 7a, the
decomposition of a constraint system invariant by rigid motions is made in the
down-set starting from rigid motions, which is the lower bounded poset shown
on figure 7b.

More groups could be added in the hierarchy of figure 7, such as glide reflec-
tions for instance. The choice of groups comes from the considered universe : it

20

Direct similarities

Rigid motions

Euclidean group

Scaling−translations

Id

Centered rotations Centered scalings

Translations Euclidean group

Similarities

Similarities

a) Group hierarchy b) Down−set for rigid motions

Direct similarities

Rigid motions
Directed translations

Figure 7: Ordered groups set

depends on the underlying geometry and on the type of constraints.

4.1.3 Invariance of systems

Each type of constraint is linked to an invariance group making well-constrained
a minimal system containing such a constraint. For example, if dist pp is the
predicate for constraints of distance between two points with known length,
the minimal system S = ({dist pp(P1, P2, K)}, {P1, P2}, {K}) is considered for
any P1, P2 and K assuming that P1 is different from P2. This system is well-
constrained modulo 2D Euclidean group D, so the latter is associated with pred-
icate symbol dist pp. This is denoted by gr(dist pp) = D.

In a hierarchy, a unique group can be the well-constrainedness group for
a type of constraint. If two groups G1 and G2 are appropriate, the group
G =< G1 ∪ G2 > (generated union) is added to the hierarchy. The group G
becomes the invariance group for the considered type of constraints.

The hierarchy has to be closed for intersection. Indeed, assuming that a
constraint system S is well-constrained under a group belonging to the hierarchy,
the well-constriction group of S = (C, X, A) is given by

⋂

c∈C gr(c).
Table 1 gives invariance groups for the predicates of example 10 with respect

to the hierarchy of figure 7.
To compute global invariance group, our implementation includes the inter-

section for each couple of groups, explicitly given in a two dimensional array.

21

Table 1: Invariance groups attached to constraints types
c: Predicate (see app.A) gr(c): Group
on pl, on pc, center, tangency cl similarities
dist pp, radius Euclidean group
angle ll direct similarities
fix p rotation around a given center
fix l translation along a given direction

4.1.4 Boundary system computation

The boundary computation is made by exhaustive enumeration of constraint
types. Assume that we need the boundary B(S1) for S1 = (C1, X1, A1) G-
invariant and S1 is a subsystem of S. First, the subsystem S2 = S − S1 =
(C2, X2, A2) is computed. The boundary entities are X = X1 ∩ X2. Then, for
every type of constraints invariant by G, all the possible metric constraints from
X are generated.

For example, with G the group of rigid motions and if X = {p1, p2, p3} (all
pi being points), we add in B(S1) the distance contraints dist pp(p1, p2, k1),
dist pp(p1, p3, k2) and dist pp(p2, p3, k3) with values for k1, k2 and k3 computed
in the solutions of system S1. The graph of groups inclusions shows that the
ratio constraints which are invariant by similarities are also invariant by rigid
motions. So, the constraint ratio(p1, p2, p1, p3, k4) is added, k4 being also com-
puted from S1.

This saturation process generally makes B(S1) structurally over-constrained
in the sense that there are too many constraints with regard to the number
of entities. However, since many of these constraints are redundant, B(S1) is
G-well-constrained as long as S1 is so. Besides, a high number of constraints
increase the chances of success of geometrical solvers.

On the contrary, the geometrical universe does not always guarantee the
possibility of expressing the boundary (see boundary system definition at section
2.4). In the example of section 4.3, without the constraint of ratio the boundary
can not be built.

4.1.5 Solvers

Solvers are algorithms which input a constraint system S and output a tuple
(S ′, G, Fr) with S ′ ∈ S and where S ′ is the subsystem the solver can deal with,
and G.Fr is the set of solutions of S ′. If the constraint set of S′ is empty, the
solver can not solve any part of S.

With this general definition of a solver, many algorithms, possibly using
additional parameters, are considered as solvers:

• location solvers: they use G-well-constrained systems as input and fix some
elements to output systems which are well-constrained modulo identity (for
instance, such a 2D solver for similarities pins two points down),

22

• classical solvers (knowledge-based solvers, graph analysis solvers, Newton-
Raphson, ...) which use a location solver as parameter,

• boundary solvers: each boundary solver is specialized in its own transfor-
mation group and computes the boundary of a system S′ with respect to
system S − S′,

• assembly solvers: the assembly process (see 4.1.4) can be seen as a partic-
ular solver which has, as a parameter, a strategy to choose solvers.

Currently, several solvers are implemented in our solving platform:

• location solvers for each group in 2D and 3D,

• two classical solvers : a knowledge based system for rule-based geometric
reasoning that can provide several solutions, and a numerical solver based
on homotopy [LM96a] yielding the closest solution to the sketch. The
latter is applied when the knowledge based system failed,

• a boundary solver which computes constraints for boundary entities ac-
cording to functional symbols of the signature and invariance group se-
mantic,

• a general decomposition solver implementing algorithm of section 4.2.

4.1.6 References

References are used in two ways : first, by location solvers (called by classical
solvers) to build particular solutions, then, during the assembly process to cal-
culate geometrical transformations. Indeed, recall that common elements share
a reference for the higher group. So the transformation is computed from the
common reference of the two figures to assemble.

The geometrical universe does not always allow to express references exactly.
For instance, with directed translations, a reference could be one coordinate of
a point, but as the sort coordinate is not included in the signature, reference
will be a point.

Sometimes a loose definition for references can be considered and “less than”
a reference is given. For example, a reference for rigid motions (D) could be a
point and an incident line. A reference for the Euclidean group (D+: D and
symmetries) could be a point and an oriented incident line. If the universe does
not contain the sort oriented line, reference for the Euclidean group can also
be used since |D+/D| = 2 is finite. In such a case, two transformation patterns
must be given, one for each reference. The loose definition implies that G acts
finitely transitively on figures.

These considerations lead to same reference for different groups. Table 2
shows generic references for the hierarchy of figure 7 with respect to the 2D
universe of appendix A.

23

Table 2: Generic references for groups
Groups References
Similarities (∅, {P1, P2}, ∅) P1, P2 : point
Direct similarities (∅, {P, C}, ∅) P : point, C : circle
Rigid motions ({on pl(P, L)}, {L, P}, ∅)
Isometries (Euclidean group)
Scaling-translations (∅, {L, P}, ∅) P : point L : line

and not on pl(P, L)
Translations (∅, {P}, ∅) P is a point
Directed translations
Rotations around center O ({on pl(O, L)}, {L, O}, ∅)
Scaling of center O ({center(O, C)}, {O, C}, ∅)

(∅, {P}, ∅) P is a point
Identity (∅, ∅, ∅)

4.1.7 Decomposition strategy

The decomposition algorithm presented in the next section is based on a strategy
that has to choose an invariance group and a solver at each iteration. The
strategy is a parameter of the decomposition algorithm. At each step, if the
previously chosen solver failed in solving, the strategy chooses a new solver
and/or group.

In our implementation, to each group of the hierarchy corresponds a location
solver which is called by classical solvers. The invariance group is computed
the following way. To each type of constraint of the geometrical universe is
associated the information of its greatest invariance groupe. This is of course
a semantic information. For a given system, the global invariance group is the
intersection of the invariance groups of each constraint.

Our strategy consists in attempting a geometric resolution for the global
invariance group. In case of failure, smaller transformation groups are tried,
using a breadthfirst traversal of the group hierarchy. At each step, the geometric
rule-based system attempts to solve the system. If, finally, the system is not
solved, the homotopic solver is called right after the location solver of the global
invariance group.

When a group G is selected, the system supplied to the selected solver is the
current system S where we get rid of all the constraints that are not G-invariant.

The solvers produce one or more particular solutions. For that, each solver
starts by choosing a reference in the figure. For example, for rigid motions in
2D, a solver starts the construction by placing a point and the direction of a
line passing through this point. For similarities, one will choose two points, etc.

Of course, other strategies could be used, and different strategies could lead
to different decompositions. So, the central question here is : which strategy
allows to discover all the solutions that solvers can produce with decomposition
and assembly ?

24

At first, one can make two comments. If a constraint system is solvable
by the available solvers, an exhaustive strategy, that is to say one which tries
all the groups with all the solvers for all references, will lead to the discovery
of a solution. Then, it is clear that the process of joining is not involved in
this question. Indeed, joint is correct because assembly does not give false
solutions and complete because if all solutions are yielded for subsystems, the
joint operation gives all solutions for the global system.

Answering the question of which strategy is the best is very difficult and
requires the analysis of solvers abilities. It can be made for simple solvers but
not with rule-based solvers where new rules can be added. The same is true of
algebraic solvers that are sensitive to numerical instability problems.

Thus, in our implementation we use the heuristic consisting in going down in
the group hierarchy from the greatest invariance group. It also consists in using
the geometrical solvers first of all because they could supply more than a single
solution – to the contrary of homotopy which is based on Newton-Raphson –
and, to finish, elements establishing a reference are chosen among those involved
in most constraints.

Note that the simplest strategy could be to always use the same solver.

4.2 Decomposition/recombination algorithm

The results of section 3 lead to a bottom-up decomposition/recombination algo-
rithm. The recombination of the subsystems is performed through a two-by-two
assembly in the reverse order of the decomposition. Adding the boundary sys-
tem at each decomposition step allows to have only one assembly rule: if two
subsystems share at least a reference for their greatest invariance group, then
they can be assembled according to the geometric entities of the reference (joint
operation).

First this section gives an algorithm to find a decomposition that allows a
straightforward recombination in well-constrained cases and then presents the
corresponding recombination algorithm.

4.2.1 Decomposition algorithm

This algorithm gives an expression of a constraint system into a stack of group
invariant subsystems (considered as solved). Parameters are a constraint sys-
tem and a strategy for the choice of the solvers. The way to assemble solutions
of subsystems, in order to yield a solved overall system, is shown in section 4.2.2.

25

Input : S : constraint system
strategy : choice strategy for solvers

Output : sp : stack of solved constraint system : (solution representative, group)

boolean success = true;
stack sp = empty stack
while strategy.newSolverPossible(S, success) and S 6= (∅,∅,A)
do

solve = strategy.chooseSolver(S)
(S1, G, Fr) = solve(S) # S1 subsystem of S, F (S1) = G.Fr

if S1 == (∅,∅,A) then # solving failed
success = false

else

push(sp, (Fr, G)) # record solved subsystem
S2 = S - S1 # compute remaining system
B S1 = boundary system(S, S1, G, Fr)# compute boundary system
S = S2 + B S1 # residual system to solve

fi

done

if success == true return sp else return empty stack

The strategy acts as described in section 4.1.7. It contains a method for de-
ciding whether the decomposition can go on or not and also a method providing
the current solver. The boundary is taken into consideration in the decomposi-
tion algorithm: after removing a solved subsystem, the border of this subsystem
is added to the remaining system. This means that there is redundant infor-
mation in the systems: the border can be computed from one system and is
explicitly given in another. Yet, since both systems are solved separately, this
redundancy does not imply the overconstrainedness of the overall system.

For simplicity reasons, this algorithm does not include the verification that
the border of the solved subsystem B(S1) is not equal to S1 itself. This verifi-
cation is of course mandatory in a real implementation, otherwise the program
may loop infinitely.

4.2.2 Joining algorithm

Once a system is decomposed (into a stack), the solutions representatives are
assembled by a transformation joint operation. Solved systems are popped out
in the opposite order of resolution and then assembled.

Input : sp : stack of solved constraint systems : (solution representative, group)
Output : Fr : solution representatives

G : invariance group

while height(sp) > 1 do

(Fr1, G1) = pop(sp) # get solutions of two subsystems
(Fr2, G2) = pop(sp) # out of stack
F = Fr2 ⊗G2 Fr1 # join them
push(sp, (F, G1)) # push result which is G1-invariant

done

26

4.3 Examples

The two following examples were successfully solved using our multi-solver res-
olution platform based on decomposition. As was explained in section 4.1.7,
our strategy is based on location solvers for each transformation group, on a
boundary system computation solver, on a rule-based geometric solver and on a
numerical solver performing homotopy using Newton-Raphson iterations. The
latter is not used in the exemples below, since a geometric resolution is possible.

4.3.1 2D Example

Figure 8a presents the statement of a constraint system based on the 2D ge-
ometrical universe UG. Recall that the types of constraints are : point-line
incidence, distance between points, between a point and a line, angles, fixed
point (point p1), distance ratio. The small lines across segments mean that
these segments have all the same length, so the ratio between any pair of these
segments is 1.

By computing the intersection of the invariance groups of every type of
constraints appearing in S, we assume that the whole problem is invariant to
Rp1

, the group of rotations around point p1. All considered groups are thus in
the down-set extracted from diagram 7 with Rp1

as lowest element. We assume
that the system is Rp1

-wc. If not, a decomposition will be made but the joint
will not be done because the subsystems to be assembled will have “less than”
a common reference.

The decomposition algorithm seen in section 4.2 uses a strategy that first
chooses the most general group. So, we first consider the subproblem containing
only constraints invariant by similarities (Figure 8c). A solver specialized in
angle and ratio constraints is called. It succeeds in resolving a subsystem S1

made of points p3, p4, p5, p6, p7.
The boundary of S1 in S, system B(S1), includes points p3, p4, p5, which

are the only ones connected by constraints to entities not in S1. System B(S1)
then consists of these points to which are added an angle constraint and a
ratio constraint. B(S1) is well-constrained modulo similarities. Notice that
without the ratio type of constraint, UG was not enough complete and would
not allow the expression of a well-constrained boundary. The boundary B(S1)
is represented on figure 8d with the constraint of ratio indicated by stating that
if length of segment p3p4 is 1, then length of segment p4p5 is k, with k computed
in solutions of S1.

S1 is removed from current statement and B(S1) is added to the remaining
of the system. The solving goes on with triangle p1, p3, p8 (system S2) which
is well-constrained modulo similarities. The boundary B(S2) contains points p1

and p3. In UG, there is no constraints types involving two points and which
would be similarity invariant. Thus, B(S2) contains no constraint.

No more similarity invariant subsystem can be calculated (apart from trivial
ones reduced to a reference). The solving process continues for subgroups of the
similarities. By going down in the groups hierarchy, we can continue with rigid

27

1
k

1
k

a) Constraint system S b) Similarities invariant subsystem c) Subsystem S

e) Subsystem S f) Displacements invariant subsystem S2 3

1

p
8

p
3

p
6

p
7

p
4

p
1

p

p
5

2

p3

p
4

p
5

d) Boundary system from S1

Figure 8: Decomposition of a 2D system into 3 subsystems

motions. The residual system S3 is shown in figure 8f. In the latter, only the
constraint fixing point p1 does not appear because it is obviously not invariant
by rigid motions. A simple geometrical construction can resolve the remaining
system.

The boundary B(S3) only contains point p1. In UG, there is no type of
constraint invariant by rigid motions and involving a single point, thus we have
B(S3) = (∅, {p1}, ∅). No more construction considering the rigid motions is
possible, so we go down in the hierarchy to group Rp1

. The remaining system is
S4 = ({fix p(p1, 0., 0.}, {p1}, ∅). It is a reference for Rp1

and is trivially solved.
The joint is then performed on the resolved systems in the reverse order.

The solved system S3 is assembled to the system S4 by computing the right
rigid motion. Then subsystem S2 and finally S1 are joined by similarities.

4.3.2 3D example

The same principles apply to the resolution of 3D problems. The syntax of the
geometrical universe is completed with sorts plane, spheres and with the corre-
sponding angle and tangencies constraints. Sorts and symbols of the signature
are associated with a numerical 3D semantics.

Figure 9 shows a 3D statement with a single distance constraint, angle con-
straints and distance ratio constraints that are not given in the figure. To help
the reader, the edges of the central tetrahedron Tc were represented with thick
lines. Dotted lines represent hidden edges and dotted curves represented angle

28

Figure 9: Rigid 3D system decomposable in 4 scalable tetrahedrons and a rigid
segment

constraints on hidden faces. Thin lines between two points represent distance
ratio constraints. All ratios are expressed with respect to distance p1p2, we thus
represent a distance constraint with a non-fixed value k and hereafter express
all ratios with respect to k.

The statement contains a central tetrahedron Tc made up with points p2p4p5p6.
Note that no explicit constraint is given upon Tc. Yet, it is linked to three other
tetrahedrons: Tp1

: p1p2p4p5, Tp7
: p4p5p6p7 and Tp3

: p2p3p5p6. The constraints
on each tetrahedron are angle constraints and distance ratios. The numerical
values of these constraints are not relevant here. The constrained metrics are:

• Tp1
: p̂2p1p5, p̂2p1p4, p̂5p1p4,

p1p5

k
, p1p4

k

• Tp7
: p̂6p7p5, p̂6p7p4,

p6p7

k
, p5p7

k
, p4p7

k

• Tp3
: p̂2p3p6,

p2p3

k
, p3p5

k
, p3p6

k

Tetrahedrons Tp1
and Tp7

are well-constrained modulo similarities. Tetrahe-
dron Tp1

is well-constrained modulo similarities. The addition of its boundary
system adds the angles of the triangle p2p4p5 and the ratios between k and dis-
tances p2p4, p2p5 and p4p5. With these new pieces of information, Tp7

becomes
well-constrained modulo similarities and can thus be solved. Adding its bound-
ary adds, among other things, the ratio between k and distance p5p6. Tp3

+ Tc

is then solvable modulo similarities.

29

No similarity invariant constraints remain, so the strategy chooses to con-
sider rigid motions. Segment p3p7 is constructed. The rest of the system is well-
constrained modulo similarities and it is thus possible to compute the similarity
transformation such that the distance p3p7 satisfies the distance constraint.

4.4 Time complexity

The complexity of the decomposition/recombination scheme can be computed
from the complexity of the decomposition/recombination algorithms, the com-
plexity of the solvers (classical and location) and the complexity of the boundary
computation.

The complexity of the decomposition algorithm is as follows. In case of
failure, each solver is tried for each transformation group. In case of success,
in the worst case, trying every solver leads iteratively to the construction of
one element (point, line, ...). The recombination consists in searching for the
common references of the subsystems, following the order of the decomposition
stack. These operations all have a polynomial complexity.

Location solvers, which temporarily pin down geometric entities, proceed in
a linear time. As to the classical solvers, their complexity may vary according
to their algorithm, but most of them have a polynomial complexity. This is the
case of both solvers used in our implementation: a homotopic solver based on
Newton-Raphson and a rule-based solver.

The weak point in terms of complexity is the boundary computation. Indeed,
exhaustively producing all the constraints allowed by the signature between the
boundary elements, according to the invariance group of the system, is a process
with an exponential time complexity. For 2D problems, the boundary is often
reduced to less than four elements and the exponential complexity is then not a
problem. However, for 3D problems where the number of boundary entities can
easily reach more than ten unknowns, this complexity can be a real handicap.
Usual statements are well-fitted for decomposition and lead to small boundaries,
but one may imagine heuristics for boundary systems with too many elements.
For instance, the boundary constraints could be constructed only on demand
when needed by other solvers.

5 Conclusion

Geometrical constraints solvers generally proceed by joining solved subsystems.
This mechanism of decomposition/recombination allows geometric solvers (which
produce all the solutions) to solve a larger class of problems, and allows numeri-
cal solvers to lower their runtime. The current trend is to consider a decomposi-
tion in subsystems invariant under the action of known transformation groups.

This article presents a formalization of this approach and shows its validity:
if a subsystem is solved modulo a transformation group, the remaining sub-
system and the boundary system form a restriction of the original system: no
solution has been added or lost through the removal of the solved subsystem and

30

the addition of the boundary system. The boundary system is defined semanti-
cally: in order for it to be expressed, the geometrical universe must contain the
appropriate constraint types.

This formalization also brings out the main elements and data types for a
general and modular implementation of decomposition/recombination resolu-
tion platform.

The formalization presented in this paper applies to all decomposition meth-
ods, although it focuses a bit on bottom-up approaches. The general decom-
position/recombination scheme that naturally results from this formalization is
general and modular and, thus, requires time to be implemented. Indeed, it
involves many data types as well as the programming of the solving strategy.

In the future, we intend this formalization to be a basis to express geomet-
ric constraints solving methods and to compare them in terms of robustness,
completeness and efficiency. A precise expression of the geometrical universe is
a prerequisite to any formal comparison of algorithms.

We see that the notion of well-constrained system depends on the considered
group. For example, numerous solvers consider as under-constrained a triangle
defined by two angles whereas this problem is well-constrained under similarities.
In a more general way, any system could be declared as well-constrained if it is
possible to express an invariance group. Here, we consider groups of well-known
geometrical transformations acting on the whole system. To characterize the
invariance of any system, it is necessary to be able to express an appropriate
group of invariance for the system by considering local groups. This approach
is the perspective of this work to deal with under-constrained problems, as was
begun in [TMS07].

A 2D GCML example

This appendix contains an example of the description, using the Geometric
Constraints Markup Language presented in [WSMF06], of a 2D geometrical
universe (see below, left) and of the geometric constraint system graphically

31

shown in figure 6 (see below, right).

<syntax>
<sorts>

point
line
circle

length
angle

scalar
</sorts>

<fsymbols>
initp : scalar scalar -> point

initl : scalar scalar -> line
initc : point scalar -> circle

initlg : scalar -> length
inita : scalar -> angle

</fsymbols>

<psymbols>

<!-- incidence point line -->
on_pl : point line

<!-- incidence point circle -->

on_pc : point circle
<!-- center of circle -->

center : point circle
<!-- distance between two points -->

dist_pp : point point length
<!-- distance between a point and a line -->

dist_pl : point line length

<!-- angle between lines -->
angle_ll : line line angle

<!-- fix radius for circle -->
radius : circle length

<!-- set coordinates for a point -->

fix_p : point scalar scalar
<!-- set slope of a line -->

fix_l : line scalar
<!-- tangency of circle and line -->

tangency_cl : circle line
<!-- tangency of circles -->

tangency_cc : circle circle

<!-- ratio between couple of points -->
ratio : point point point point scalar

</psymbols>

</syntax>

<gcs>
<syntax>

<unknowns>
point p1 p2 p3 p4
line l1 l2

circle c1
</unknowns>

<parameters>
length k1 k2

angle a1
</parameters>

<constraints>

on_pl(p1,l1) on_pl(p2,l1)
on_pl(p1,l2) on_pl(p3,l2)
on_pc(p3,c1) on_pc(p2,c1)

center(p4, c1)

dist_pp(p1,p2,k1)
angle_ll(l1,l2,a1)
radius(c1,k3)

tangency_cl(c1,l1)
</constraints>

</syntax>

<valuation>
k1=initlg(100)
k2=initlg(50)

a1=inita(0.52)
</valuation>

</gcs>

32

References

[Ald88] B. Aldefeld. Variations of geometries based on a geometric-reasoning
method. Computer-Aided Design, 20(3):117–126, 1988.

[Brü93] B. Brüderlin. Using geometric rewrite rules for solving geometric
problems symbolically. Theoretical Computer Science, 116(2):291–
303, 1993.

[DMS98] J.-F. Dufourd, P. Mathis, and P. Schreck. Geometric construction
by assembling solved subfigures. Artificial Intelligence, 99(1):73–
119, 1998.

[GC98] X.-S. Gao and S.-C. Chou. Solving geometric constraint systems II.
A symbolic approach and decision of Rc-constructibility. Computer-
Aided Design, 30(2):115–122, 1998.

[GHY02] X.-S. Gao, C. M. Hoffmann, and W.-Q. Yang. Solving spatial basic
geometric constraint configurations with locus intersection. In SMA
’02: Proceedings of the seventh ACM symposium on Solid modeling
and applications, pages 95–104, Saarbrücken, Germany, 2002. ACM.

[GLZ06] X.-S. Gao, Q. Lin, and G.-F. Zhang. A C-tree decomposition algo-
rithm for 2D and 3D geometric constraint solving. Computer-Aided
Design, 38(1):1–13, 2006.

[JAS97] R. Joan-Arinyo and A. Soto. A correct rule-based geometric con-
straint solver. Computer and Graphics, 5(21):599–609, 1997.

[JTNM06] C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Decom-
position of geometric constraint systems: a survey. International
Journal on Computer Graphics and Application, 16(5,6):379–414,
2006.

[Kon92] K. Kondo. Algebraic method for manipulation of dimensional rela-
tionships in geometric models. Computer-Aided Design, 24(3):141–
147, 1992.

[Kra92] G. A. Kramer. A geometric constraint engine. Artificial Intelligence,
58(1-3):327–360, 1992.

[LLG81] R. Light, V. Lin, and D. C. Gossard. Variational Geometry in CAD.
Computer Graphics, 15(3):171–175, 1981.

[LM96a] H. Lamure and D. Michelucci. Solving geometric constraints by ho-
motopy. IEEE Transactions on Visualization and Computer Graph-
ics, 2(1):28–34, 1996.

[LM96b] R. S. Latham and A. E. Middleditch. Connectivity analysis: a
tool for processing geometric constraints. Computer-Aided Design,
28(11):917–928, 1996.

33

[Owe91] J. C. Owen. Algebraic solution for geometry from dimensional con-
straints. In SMA ’91: Proceedings of the first ACM symposium
on Solid modeling foundations and CAD/CAM applications, pages
397–407, Austin, Texas, United States, 1991. ACM.

[Sch94] P. Schreck. A knowledge-based for solving geometric constructions
problems. In Proceedings of the 7th International Conference on
Systems research, Informatics and Cybernetics, pages 19–24. J.W.
Brahan and G.E. Lasker, 1994.

[Sit06] M. Sitharam. Well-formed systems of point incidences for resolving
collections of rigid bodies. International Journal of Computational
Geometry and Application, 16(5,6):591–615, 2006.

[SM06] P. Schreck and P. Mathis. Geometrical constraint system decompo-
sition: a multi-group approach. International Journal of Computa-
tional Geometry and Application, 16(5,6):431–442, 2006.

[SS06] P. Schreck and E. Schramm. Using the invariance under the simi-
larity group to solve geometric constraint systems. Computer-Aided
Design, 38(5):475–484, 2006.

[Sun86] G. Sunde. A CAD system with declarative specification of shape.
In Proceedings of the IFIP WG 5.2 on Geometric Modeling, Rens-
selaerville, NY, 1986.

[TMS07] S. E. B. Thierry, P. Mathis, and P. Schreck. Towards an homoge-
neous handling of under-constrained and well-constrained systems
of geometric constraints. In SAC ’07: Proceedings of the 2007 ACM
symposium on Applied computing, pages 773–777, Seoul, Korea,
2007. ACM.

[vdMB08] H.A. van der Meiden and W.F. Broonsvort. Solving systems of 3D
geometric constraints using non-rigid clusters. In GPM’08: Ad-
vances in Geometric Modelling and Processing, Hangzhou, China,
2008. Volume 4975 of Lecture Notes in Computer Science, Springer,
Berlin.

[VSR92] A. Verroust, F. Schonek, and D. Roller. Rule-oriented method
for parameterized computer-aided design. Computer-Aided Design,
24(10):531–540, 1992.

[WSMF06] J. Wintz, P. Schreck, P. Mathis, and A. Fabre. A framework for
geometric constraint satisfaction problem. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pages 974–978,
Dijon, France, 2006. ACM.

34

	Introduction
	Syntax and semantics of geometric constraint systems
	Geometrical universe
	Constraint systems
	Definitions
	Operations on subsystems

	Figures
	Definitions
	Joint

	Boundary system
	Decomposition

	Invariance under the action of a transformation group
	Transformation groups
	Group invariance, orbits
	Joint and groups
	Bounded poset of transformation groups
	References

	Well-constrainedness modulo a transformation group
	Definitions
	Well-constrainedness joint

	Decomposition under transformation groups

	Modular implementation
	Elements of implementation
	Geometrical universe, constraint systems and figures
	Groups hierarchy
	Invariance of systems
	Boundary system computation
	Solvers
	References
	Decomposition strategy

	Decomposition/recombination algorithm
	Decomposition algorithm
	Joining algorithm

	Examples
	2D Example
	3D example

	Time complexity

	Conclusion
	2D GCML example

