Towards an homogeneous handling of under-constrained and
well-constrained systems of geometric constraints

Simon E.B. Thierry Pascal Mathis Pascal Schreck
Ph.D. student Associate Professor Professor
LSIT, UMR CNRS 7005 LSIT, UMR CNRS 7005 LSIT, UMR CNRS 7005
Péle Technologique, Pbéle Technologique, Pbdle Technologique,
BP10413, 67412, llikirch, BP10413, 67412, llikirch, BP10413, 67412, llikirch,
France France France
thierry@lsiit.u-strasbg.fr ~ mathis@lIsiit.u-strasbg.fr schreck@lsiit.u-
strasbg.fr

11 March 2007

Abstract

Most of the geometric constraints solvers consider systems of constraints well-constrained modulo
the rigid motions group. and either halt on error when they encounter under-constrained sub-
systems, or attempt to add parameterized constraints so as to get rid of the under-constriction.

We studied transformations groups making well-constrained some problems that are usually con-
sidered as under-constrained. This leads to new algorithms which allow an homogeneous handling
of systems of geometric constraints and thus a better adaptation to the needs of the user.

Geometric constraints solving, Under-constraint, Invariance under transformations groups

1 Introduction

Geometric constraints solving in Computer-Aided Design (CAD) aims at yielding a figure which
meets some metric requirements (e.g. distances between points or angles between lines), usually
specified under graphical form. Solutions are returned as the coordinates of the geometric entities.
>From the designer’s point of view, there must be one and only one solution to a constraints
system, since it is used to represent a physical object. Yet, a constraints system may have no
solutions due to numerical inconsistancies. It is then said over-constrained. On the other hand, a
system may have an infinity of solutions when it is under-constrained, that is to say when there are
not enough constraints to compute the position of every geometric entity. In both cases, geometric
constraints solvers usually halt on error, either because it is impossible to find a solution, or because
they cannot choose one in particular. Solvers are generally intended to work on well-constrained
systems, for which there is a finite — but possibly large — number of solutions. For further details
about the field of geometric constraints solving and the most efficient current methods, the reader
may refer to [4,7].
The notion of well-constriction, though, is ambiguous. Rigid systems, i.e. systems where all dis-
tances and angles are known, are usually considered as well-constrained. The geometric entities of
these systems have no fixed coordinates. For the designer, moving an object does not change it,
but in terms of coordinates, there is an infinity of solutions.
Explicitly expressing an invariance group can solve this ambiguity: if there are a finite number
of solutions from which, using transformations of a given group G, one can generate all the so-
lutions of the system, these solutions are invariant under the group G. The system itself is said
well-constrained modulo the invariance group. A rigid object is then well-constrained modulo the
rigid motions.

Using classical transformations groups (rotations, translations, scaling operations, and their
compositions) solves the ambiguity explained above. In this paper, we present a way to extend
this approach so as to get an homogeneous way of handling well-constrained and under-constrained
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Figure 1: Rigid GCS Figure 2: Non rigid GCS

systems: we expose transformations groups that are specific to the system to be solved, acting only
on parts of it. This enables us to build algorithms working on any kind of geometric constraints
systems, without prior hypothesis on its level of constriction.

The rest of this paper is organized as follows. Section 2 is an overview of existing work about
under-constriction. Section 3 explains the philosophy and necessary definitions of our approach.
Section 4 describes algorithms aiming at obtaining an invariance group of a system. Section 5
discusses the application fields and the advantages of our approach.

2 Related work

Detection and eradication of under-constriction are major issues in the field of geometric con-
straints systems, since most of the resolution methods make the hypothesis that the system is
well-constrained. The possibility to determine the well-constriction of a subsystem even is manda-
tory for decomposition methods [7].

Most of the methods to detect under-constrained parts of a system are based on flows, following
the approach of Latham and Middleditch [10]. In [6], Jermann et al. proposed a flow-based method
extending the one of Hoffmann et al. [5] and considering a more generalized notion of rigidity which
includes numerical consistancy.

In [14], Sitharam and Zhou introduced an approximate rigidity characterization in 3D distance
constraint graphs, called module-rigidity.

The witness configuration method of Michelucci and Foufou [12] is a numerical method that also
allows the detection of non-rigid parts by computing Cayley-Menger determinants.

Since detecting an under-constrained system only allows the software to produce a warning to
the user, automatically transforming it into a well-constrained system is a major issue in CAD.
An important work on this domain was done by Joan-Arinyo et al. [8], introducing the notion of
deficit and explaining a decomposition method, based on a modification of Owen’s algorithm, that
extracts under-constrained subsystems and finds which parameterized constraints should be added
to deal with the under-constriction.

Based on this method, Gao et al. [3] proposed efficient completion algorithms. Another successful
attempt is the one of Li et al. [11], which deals with under- and over-constrained systems in 3
dimensions, but has a high complexity.

All these methods need to rerun the algorithm from scratch when the user adds a new constraint.

In the field of mechanisms, a lot of work has been done on the synthesis of articulated systems
and the computation of motion abilities of a given solution under kinematic constraints. To our
knowledge, few papers are about methods to find an initial position to a mechanism designed with
constraints. For more details, see [1] and references therein.

The works by Kramer [9] are based on an incremental assembly of geometric objects during
which the algorithm reckons the degrees of freedom up at linking points. The degrees are removed
with the consideration of the incidence constraints and using a simple loci method. If some degrees
still remain though all objects and constraints have been consumed, a point of articulation is found.
This approach may fail with some systems, such as the one on figure 1, where the lengths of the
"inner triangle" are not computed.



In [13], we solved the ambiguity evoked in the introduction by considering as well-constrained
modulo a transformations group a system with a finite number of solutions from which, using the
transformations, all solutions can be obtained.

3 Towards a new definition of well-constriction

As seen in section 2, most current applications try to add parameterized constraints so as to get
rid of the under-constriction, but this approach is somehow limited by a few problems. First of all,
not all under-constrained systems can currently be detected, and there is no complete algorithm to
add parameterized constraints to any known under-constrained system. Even if such an algorithm
existed, one still would not be assured to satisfy the user’s will, since there often are several ways
to add constraints, but not all have a "meaning" for the user.

Moreover, a user may want to sketch an under-constrained system. For instance, a pair of
scissors has a remaining degree of freedom due to the rotating possibility around the linking point
of the two scissors.

3.1 Motivation

Our approach intends to avoid these drawbacks by generalizing the notion of well-constriction to
under-constrained systems, and finding ways to handle them the same way we handle classical
well-constrained systems. We consider a system as well-constrained modulo an invariance group.

Definition 1: Well constriction modulo an invariance group
A geometric constraints system S is well-constrained modulo a group G if there exists a finite
number of particular solutions S;...S, of S such that any solution of S can be obtained by the
application of a transformation of G to one of the n particular solutions. [J

In [13], we considered classical geometrical transformations groups, such as the euclidean group,
the rigid motions or the similarities. Considering only these groups does not help here, since it still
implies many prior conditions on the system to be solved.

Without prior hypothesis on the system, there always exists at least one invariance group:
the group of the permutations of the solutions. This group is specific to the system, and the
corresponding transformations exist only for its solutions. Obviously, this group cannot be useful
because it involves the prior knowledge of all the solutions, which is precisely the goal of geometric
constraints solving.

Our approach is an intermediary approach: by studying the system, we build transformations
groups, specific to the system to be solved. These transformations are based on classical groups
(i.e. translations, rotations and scaling operations) but may apply only to some parts of the solution
figures. For instance, a GCS describing a pair of scissors is well-constrained modulo a group, which
we call a rotoid transformations group, consisting in a translation of the linking point of the two
scissors, and of two rotations around this point, each applying only to one of the scissors.

3.2 Definitions and terminology

In this paper, we assume that the considered systems are 2D systems with distances and angles
between points and lines.

Definition 2: Solutions of a GCS
A geometric constraints system is a triple S = (C, X, A) with C (the constraints) a set of propo-
sitional terms on X U A, X the set of unknowns, generally geometric entities, and A the set of
parameters, ¢.e. metric values of the constraints or entities with given coordinates.

A solution of S is a valuation of the unknowns in the considered geometric universe. O

3.2.1 Assembly transformations

Based on our geometric universe, we built three families of transformations groups: rotoid trans-
formations, sliding transformations and positioning transformations. We call transformations of
one of these families assembly transformations. Let us first define on which kind of systems these
transformations apply.
Definition 3: Non rigid assemblies

Let S be the union of two non self-included GCS &1 and S», such that S; and S2 share one and
only one point p, and such that there is no constraint in S concerning both one geometric entity of
S1 and one of Sz, except p. S is called a rotoid assembly of S; and S3. We similarly define a sliding



(resp. positioning) assembly as a the union of two subsystems with only a line (resp. nothing) in
common. [

Definition 4: Simple and complex assemblies
Let S be a rotoid, sliding or positioning assembly of two subsystems S; and S2. If both §; and S2
are well-constrained modulo rigid motions, S is called a simple assembly. Otherwise, it is called a
complex assembly. [

The assembly transformations are defined as follows (the notation f|g stands for the restriction
of figure f to the subsystem S).

Definition 5: Assembly transformations
Let S be a rotoid assembly of two subsystems S1 and Sz with p their common point, and let f,
and fp be two solutions of S. A rotoid transformation of f, into f, consists in the composition of

e a rigid motion of f, with result f’, such that values of point p in f’, and f, are the same
e arotation of f,|g, around the common point p such that f’,|gs, and fy|g, coincide
e a rotation of f’a|52 around the common point p such that f'a\s2 and fi|g, coincide

We similarly define a sliding transformation as a rigid motion and two translations along the
common line, and a positioning transformation as two rigid motions. [J

This last definition implies that fu|g, and fu|g,, @ € [1,2], are superposable, thus requiring
prior assembly transformations on S1 or S if those subsystems are themselves simple or complex
assemblies. Notice that the existence of complex assemblies implies that there is not always a single
invariance group for an assembly.

Using definitions 2 and 3 is not sufficient to describe all GCS built on our geometric universe
because of the closed chains. For simplification purpose, we consider a closed chain as a simple
or complex assembly with one or more closure conditions. This allows us to consider only binary
assemblies, and considerably simplify the data structures.

Definition 6: Closure condition
Let S be a simple or a complex assembly and ¢ € S a constraint linking an entity of each of the
two assembled systems. cis a closure condition of S if S+ ¢ is not rigid and cannot be decomposed
in two systems S; and S2 such that S + ¢ is a simple or a complex assembly of S; and S3. O

3.2.2 (G-references

A reference for a G-system S (i.e. well-constrained modulo G) is a GCS R, whose entities are all
in S, such that SU R has one and only one solution (resp. a finite number) for the transformation
to act simply (resp. finitely) transitively. In the case of a GCS well-constrained modulo the rigid
motions, a reference could for instance be a point and a line to get a finite number (maximum two)
solutions, together with an orientation to get a single solution.

For simple rotoid assemblies, a reference could be the common point of the two subsystems,
and a line in each subsystem. For simple sliding assemblies, a reference could be two points on the
common line, one in each of the two subsystems. For positioning assemblies, a reference consists
in a reference for each of the two subsystems.

The notion of reference becomes recursive with complex assemblies: for instance, a reference
for a complex rotoid assembly would be the common point, a line in each of the subsystems, and
to this one adds the entities of the subsystems that lack to have references for the subsystems.

We introduce the notion of relative reference.

Definition 7: Relative reference
Let G1 and G2 be two transformations groups and S a G1-system. A GCS generated by a constraint
c is a reference for G relatively to Gz if S + ¢ is a Ga-system. [

For instance, a distance between the two extremities of the scissors is a reference for the rotoid
transformations group of the pair of scissors relatively to the rigid motions group.

3.2.3 Border of an assembly

The usual definition of the border is the following:

Definition 8: Border of a rigid system
Let S be a rigid GCS and H any GCS. The border of S relatively to H is the system B = (C, X, A)
with X = X g N Xy, C the set of all distances between two points and angles between two lines in
X and A the set of parameters appearing in C, with values being computed from S. O

This definition does not hold for assemblies. We extended it with a recursion ending at the rigid
subsystems.



Definition 9: Border of an assembly
Let S be an assembly of two subsystems S1 and Sz and ‘H any system. The border of S relatively
to H is the union of the borders of S; and S» relatively to H. O

4 An incremental assembly algorithm

Based on the definitions discussed in section 3, we established algorithms to find an invariance
group of a GCS and deduce a construction plan. We detail them in this section. These algorithms
were made with a will of generality, enabling an extension of the geometric universe and of the
considered invariance groups without too much adaptation.

4.1 Obtaining the describing terms

The basic idea is to consider the constraints of the GCS one by one, and compute an invariance
group of the system after the addition of each of them. We must have a list of the terms (in the
sense of term logic) describing the system generated by one constraint

The global algorithm consumes a constraint, finds the corresponding term, and assembles the
generated system with the already constructed system. The functions used in algorithm 1 are the
followings:

Alg. 1 Term describing a GCS

Require: §: a GCS
Term 7 := EmptyTerm()
for all ¢ € Constraints(S) do
T := Assemble(7, Catalog(c))
end for
7T := AddEntities(7,S)
return 7

e EmptyTerm: returns the term describing an empty GCS

e Constraints: returns the set of constraints of a GCS

e Catalog: returns the term describing the system generated by a constraint
e Assemble: returns the term describing the union of any two systems

e AddEntities: creates positioning assemblies for geometric entities that were not linked by
any constraint

We so have an incremental strategy. Notice that the algorithm is extremely general, and may
apply to any geometric universe and any set of invariance groups, as long as one has the Catalog
and Assemble functions.

The output of algorithm 1 is a term describing the assembly. If it determines that the system is
an assembly of two systems S1 and Sz, the output will be A(S1,S2), A being the kind of assembly:
Ap for a rotoid assembly, As and Ap for a sliding and a positioning assembly. Knowing the kind
of assembly means knowing an invariance group.

4.2 Assembling two systems

The function Propagation(7;,72) is the core function of the method: it computes the border of 73
relatively to 77 and computes which changes are made to 7; by this border. That is, it finds the
parts of 7; that become rigid by the adjunction of 75.

Function DetermineAssembly determines the assembly to construct: after the propagation, the
new rigid parts are incorporated to the first system. One just has to see what entities the first
system now has in common with the rest of the second system: if they have one point in common,
a rotoid assembly is constructed, for instance.

For means of generality and extendability, the calls to Propagation are made in a loop, so as to
ensure that the modifications made to one of the two systems are taken into account in the second
system. Function Assemble then works as follows:

In our geometric universe, the loop is not useful, but one can easily imagine more complex
constraints leading to the necessity of several propagations and back-propagations. Moreover, this
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Alg. 2 Term describing the assembly of two systems

Require: 7;,75: terms describing the systems to assemble
Term buf; := 77, bufy := 75
while buf; = 7; or bufy; =75 do
bufy := 77, bufy := 75
Ty := Propagation(73,77)
75 := Propagation(7y,753)
end while
return DetermineAssembly (7, 75)

approach makes algorithm 2 usable with any two systems, enabling us to give up the incremental
strategy if needed.

4.3 Closed chains

The propagation method we have been using so far does not always manage to determine the
rigidity of a system after adding a constraint. The method actually works when there exists a
subsystem which is a simple assembly and when the added constraint is a relative reference for this
simple assembly relatively to the rigid motions group.

Otherwise, the propagation method does only consider the new constraint as a closure condition.
There are different ways to solve this problem: one can compute the deficit [8] of the closed chain,
and if it is zero, rewrite the term to show that the closed chain actually is rigid; one may also use
a more complex geometric reasoning, such as a loci method [2].

4.4 Retrieval of a construction plan

The algorithms explained above are used to obtain a term describing a GCS, letting the user know
an invariance group of the system. The next step is to find the particular solutions from which all
other solutions can be obtained by application of the transformations.

We keep the history of the term construction and of the rewritings due to the detection of
relative references. Computing the assembly transformation one should apply to a simple assembly
so that it satisfies a relative reference is trivial. Knowing the history of the term construction allows
us to build a construction plan based on these transformations.

This works as long as the Propagation function manages to determine the rigidity of a closed
chain. Otherwise, we need to use an external solver to get the valid solutions of the rigid subsystem.

4.5 Example of use

Let us incrementally build the term describing the GCS of figure 1, with one possible order of
constraints consideration. Some steps are shown on figure 3. Step a shows a rotoid assembly
constructed after the consideration of two distance constraints. The addition of an angle constraint
leads, through the Propagation function, to the rewriting of this assembly: the angle is a relative
reference, and the resulting system is rigid. At step b, three other distance constraints and one angle
have been consumed, resulting in a complex rotoid assembly containing three rigid subsystems. The
addition of the distance constraint leads to the creation of a non rigid closed chain: this constraint
is a closure condition. When, at step ¢, the last angle is added, the rigidification of the bottom
"triangle" is detected, and the changes are propagated, leading to the rigidification of the whole
system.

The fourth image of figure 3 (d) shows a closed chain made of a complex assembly of three rigid
bars and a closure condition (the fourth distance). The addition of the angle constraint forces our
method to use an external solver, because it is not a relative reference for an assembly.

5 Applications

In this section, we show the application field and the possibilities granted by our approach and by
our algorithms.



Figure 3: Construction steps of figure 1 (a, b, ¢) and a problematic rigid GCS (d)

5.1 Homogeneous consideration of GCS

The consideration of invariance groups and the generality of our algorithms leads to an homogoneous
capture of the systems to be solved, without a prior sort of under-constrained and well-constrained
systems: no hypothesis is made on the GCS. Under-constrained and well-constrained (in the clas-
sical sense) systems are handled through the same process, without adding any constraint.

Such an approach opens the way to softwares where the user sketches a GCS and gets the
invariance group of the system and the particular solutions from which all other solutions can be
obtained by transformations of the invariance group.

The knowledge of the invariance group allows the software to build animations showing the
user, to some extent, how the system he sketched can move. The user can then see if his GCS is
articulated, scalable, rigid, etc..

The user can then "ask a question" about the possibilities of the solutions by adding a new
constraint (for instance: are there solutions where the distance between points A and B is = 7").
Our incremental strategy allows us to answer the question without starting the solving process
from scratch, using the term describing the initial system.

5.2 Multi-solver strategy

Our method alone does not solve more geometric constraints problems than other existing solvers, it
mainly brings some under-constrained systems to the field of the solved systems. By integrating it
within a multi-solver strategy, we also ensure we don’t solve less than other solvers. This approach
enables optimal handling of the user’s sketch: should he specify from the beginning that he intends
his system to be well-constrained modulo the rigid motions, our strategy would be to use a classical
decomposition algorithm, calling the algorithms of section 4 only if it came to fail because of an
under-constriction modulo the rigid motions.

Moreover, a multi-solver approach allows us to give up the incremental strategy when it does
not seem to fit our needs. One could for instance prefer the use of a classical decomposition method
to extract all greatest rigid subsystems, before finally using the Assemble function to assemble them
if there is more than one. Should the user be unsatisfied and ask for a rigid solution, this approach
enables us to add relative references or to use another completion algorithm, like [8].

6 Conclusion and perspectives

Under-constrained systems form a problematic family in the field of geometric constraints solving.
In this paper, we presented an approach to homogeneously handle under- and well-constrained
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systems. Our method is based on a generalization of the notion of well-constriction, considering
invariance groups. We exposed the assembly transformations, specific to the system to be solved.
A class of problems, usually considered as under-constrained, can now be seen as well-constrained
modulo assembly transformations. We then built extendable algorithms intended to obtain the
description of a geometric constraints system as a term together with one of its invariance groups.

This approach appears promising to us. Indeed, in order to use our method with any under-
constrained system, one only has to find the appropriate transformations groups and their relative
references, so as to get the particular solutions from which the whole solution space can be gener-
ated. Extension of the considered groups and generalization of the transformration groups are the
next steps of our work.

Moreover, we think that this approach may lead to a new characterization of rigidity in 3D.
The famous double-banana would then be well-constrained modulo the rotations around the line
passing through the two common points.
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