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tMost of the geometri
 
onstraints solvers 
onsider systems of 
onstraints well-
onstrainedmodulothe rigid motions group, and either halt on error when they en
ounter under-
onstrained sub-systems, or attempt to add parameterized 
onstraints so as to get rid of the under-
onstri
tion.We studied transformations groups making well-
onstrained some problems that are usually 
on-sidered as under-
onstrained. This leads to new algorithms whi
h allow an homogeneous handlingof systems of geometri
 
onstraints and thus a better adaptation to the needs of the user.Geometri
 
onstraints solving, Under-
onstraint, Invarian
e under transformations groups1 Introdu
tionGeometri
 
onstraints solving in Computer-Aided Design (CAD) aims at yielding a �gure whi
hmeets some metri
 requirements (e.g. distan
es between points or angles between lines), usuallyspe
i�ed under graphi
al form. Solutions are returned as the 
oordinates of the geometri
 entities.>From the designer's point of view, there must be one and only one solution to a 
onstraintssystem, sin
e it is used to represent a physi
al obje
t. Yet, a 
onstraints system may have nosolutions due to numeri
al in
onsistan
ies. It is then said over-
onstrained. On the other hand, asystem may have an in�nity of solutions when it is under-
onstrained, that is to say when there arenot enough 
onstraints to 
ompute the position of every geometri
 entity. In both 
ases, geometri

onstraints solvers usually halt on error, either be
ause it is impossible to �nd a solution, or be
ausethey 
annot 
hoose one in parti
ular. Solvers are generally intended to work on well-
onstrainedsystems, for whi
h there is a �nite � but possibly large � number of solutions. For further detailsabout the �eld of geometri
 
onstraints solving and the most e�
ient 
urrent methods, the readermay refer to [4, 7℄.The notion of well-
onstri
tion, though, is ambiguous. Rigid systems, i.e. systems where all dis-tan
es and angles are known, are usually 
onsidered as well-
onstrained. The geometri
 entities ofthese systems have no �xed 
oordinates. For the designer, moving an obje
t does not 
hange it,but in terms of 
oordinates, there is an in�nity of solutions.Expli
itly expressing an invarian
e group 
an solve this ambiguity: if there are a �nite numberof solutions from whi
h, using transformations of a given group G, one 
an generate all the so-lutions of the system, these solutions are invariant under the group G. The system itself is saidwell-
onstrained modulo the invarian
e group. A rigid obje
t is then well-
onstrained modulo therigid motions.Using 
lassi
al transformations groups (rotations, translations, s
aling operations, and their
ompositions) solves the ambiguity explained above. In this paper, we present a way to extendthis approa
h so as to get an homogeneous way of handling well-
onstrained and under-
onstrained1



Figure 1: Rigid GCS Figure 2: Non rigid GCSsystems: we expose transformations groups that are spe
i�
 to the system to be solved, a
ting onlyon parts of it. This enables us to build algorithms working on any kind of geometri
 
onstraintssystems, without prior hypothesis on its level of 
onstri
tion.The rest of this paper is organized as follows. Se
tion 2 is an overview of existing work aboutunder-
onstri
tion. Se
tion 3 explains the philosophy and ne
essary de�nitions of our approa
h.Se
tion 4 des
ribes algorithms aiming at obtaining an invarian
e group of a system. Se
tion 5dis
usses the appli
ation �elds and the advantages of our approa
h.2 Related workDete
tion and eradi
ation of under-
onstri
tion are major issues in the �eld of geometri
 
on-straints systems, sin
e most of the resolution methods make the hypothesis that the system iswell-
onstrained. The possibility to determine the well-
onstri
tion of a subsystem even is manda-tory for de
omposition methods [7℄.Most of the methods to dete
t under-
onstrained parts of a system are based on �ows, followingthe approa
h of Latham and Middledit
h [10℄. In [6℄, Jermann et al. proposed a �ow-based methodextending the one of Ho�mann et al. [5℄ and 
onsidering a more generalized notion of rigidity whi
hin
ludes numeri
al 
onsistan
y.In [14℄, Sitharam and Zhou introdu
ed an approximate rigidity 
hara
terization in 3D distan
e
onstraint graphs, 
alled module-rigidity.The witness 
on�guration method of Mi
helu

i and Foufou [12℄ is a numeri
al method that alsoallows the dete
tion of non-rigid parts by 
omputing Cayley-Menger determinants.Sin
e dete
ting an under-
onstrained system only allows the software to produ
e a warning tothe user, automati
ally transforming it into a well-
onstrained system is a major issue in CAD.An important work on this domain was done by Joan-Arinyo et al. [8℄, introdu
ing the notion ofde�
it and explaining a de
omposition method, based on a modi�
ation of Owen's algorithm, thatextra
ts under-
onstrained subsystems and �nds whi
h parameterized 
onstraints should be addedto deal with the under-
onstri
tion.Based on this method, Gao et al. [3℄ proposed e�
ient 
ompletion algorithms. Another su

essfulattempt is the one of Li et al. [11℄, whi
h deals with under- and over-
onstrained systems in 3dimensions, but has a high 
omplexity.All these methods need to rerun the algorithm from s
rat
h when the user adds a new 
onstraint.In the �eld of me
hanisms, a lot of work has been done on the synthesis of arti
ulated systemsand the 
omputation of motion abilities of a given solution under kinemati
 
onstraints. To ourknowledge, few papers are about methods to �nd an initial position to a me
hanism designed with
onstraints. For more details, see [1℄ and referen
es therein.The works by Kramer [9℄ are based on an in
remental assembly of geometri
 obje
ts duringwhi
h the algorithm re
kons the degrees of freedom up at linking points. The degrees are removedwith the 
onsideration of the in
iden
e 
onstraints and using a simple lo
i method. If some degreesstill remain though all obje
ts and 
onstraints have been 
onsumed, a point of arti
ulation is found.This approa
h may fail with some systems, su
h as the one on �gure 1, where the lengths of the"inner triangle" are not 
omputed. 2



In [13℄, we solved the ambiguity evoked in the introdu
tion by 
onsidering as well-
onstrainedmodulo a transformations group a system with a �nite number of solutions from whi
h, using thetransformations, all solutions 
an be obtained.3 Towards a new de�nition of well-
onstri
tionAs seen in se
tion 2, most 
urrent appli
ations try to add parameterized 
onstraints so as to getrid of the under-
onstri
tion, but this approa
h is somehow limited by a few problems. First of all,not all under-
onstrained systems 
an 
urrently be dete
ted, and there is no 
omplete algorithm toadd parameterized 
onstraints to any known under-
onstrained system. Even if su
h an algorithmexisted, one still would not be assured to satisfy the user's will, sin
e there often are several waysto add 
onstraints, but not all have a "meaning" for the user.Moreover, a user may want to sket
h an under-
onstrained system. For instan
e, a pair ofs
issors has a remaining degree of freedom due to the rotating possibility around the linking pointof the two s
issors.3.1 MotivationOur approa
h intends to avoid these drawba
ks by generalizing the notion of well-
onstri
tion tounder-
onstrained systems, and �nding ways to handle them the same way we handle 
lassi
alwell-
onstrained systems. We 
onsider a system as well-
onstrained modulo an invarian
e group.De�nition 1: Well 
onstri
tion modulo an invarian
e groupA geometri
 
onstraints system S is well-
onstrained modulo a group G if there exists a �nitenumber of parti
ular solutions S1...Sn of S su
h that any solution of S 
an be obtained by theappli
ation of a transformation of G to one of the n parti
ular solutions. �In [13℄, we 
onsidered 
lassi
al geometri
al transformations groups, su
h as the eu
lidean group,the rigid motions or the similarities. Considering only these groups does not help here, sin
e it stillimplies many prior 
onditions on the system to be solved.Without prior hypothesis on the system, there always exists at least one invarian
e group:the group of the permutations of the solutions. This group is spe
i�
 to the system, and the
orresponding transformations exist only for its solutions. Obviously, this group 
annot be usefulbe
ause it involves the prior knowledge of all the solutions, whi
h is pre
isely the goal of geometri

onstraints solving.Our approa
h is an intermediary approa
h: by studying the system, we build transformationsgroups, spe
i�
 to the system to be solved. These transformations are based on 
lassi
al groups(i.e. translations, rotations and s
aling operations) but may apply only to some parts of the solution�gures. For instan
e, a GCS des
ribing a pair of s
issors is well-
onstrained modulo a group, whi
hwe 
all a rotoid transformations group, 
onsisting in a translation of the linking point of the twos
issors, and of two rotations around this point, ea
h applying only to one of the s
issors.3.2 De�nitions and terminologyIn this paper, we assume that the 
onsidered systems are 2D systems with distan
es and anglesbetween points and lines.De�nition 2: Solutions of a GCSA geometri
 
onstraints system is a triple S = (C, X, A) with C (the 
onstraints) a set of propo-sitional terms on X ∪ A, X the set of unknowns, generally geometri
 entities, and A the set ofparameters, i.e. metri
 values of the 
onstraints or entities with given 
oordinates.A solution of S is a valuation of the unknowns in the 
onsidered geometri
 universe. �3.2.1 Assembly transformationsBased on our geometri
 universe, we built three families of transformations groups: rotoid trans-formations, sliding transformations and positioning transformations. We 
all transformations ofone of these families assembly transformations. Let us �rst de�ne on whi
h kind of systems thesetransformations apply.De�nition 3: Non rigid assembliesLet S be the union of two non self-in
luded GCS S1 and S2, su
h that S1 and S2 share one andonly one point p, and su
h that there is no 
onstraint in S 
on
erning both one geometri
 entity of
S1 and one of S2, ex
ept p. S is 
alled a rotoid assembly of S1 and S2. We similarly de�ne a sliding3



(resp. positioning) assembly as a the union of two subsystems with only a line (resp. nothing) in
ommon. �De�nition 4: Simple and 
omplex assembliesLet S be a rotoid, sliding or positioning assembly of two subsystems S1 and S2. If both S1 and S2are well-
onstrained modulo rigid motions, S is 
alled a simple assembly. Otherwise, it is 
alled a
omplex assembly. �The assembly transformations are de�ned as follows (the notation f |S stands for the restri
tionof �gure f to the subsystem S).De�nition 5: Assembly transformationsLet S be a rotoid assembly of two subsystems S1 and S2 with p their 
ommon point, and let faand fb be two solutions of S. A rotoid transformation of fa into fb 
onsists in the 
omposition of
• a rigid motion of fa with result f ′

a
su
h that values of point p in f ′

a
and fb are the same

• a rotation of f ′

a
|S1

around the 
ommon point p su
h that f ′

a
|S1

and fb|S1

oin
ide

• a rotation of f ′

a
|S2

around the 
ommon point p su
h that f ′

a
|S2

and fb|S2

oin
ideWe similarly de�ne a sliding transformation as a rigid motion and two translations along the
ommon line, and a positioning transformation as two rigid motions. �This last de�nition implies that fa|Si

and fb|Si
, i ∈ [1, 2], are superposable, thus requiringprior assembly transformations on S1 or S2 if those subsystems are themselves simple or 
omplexassemblies. Noti
e that the existen
e of 
omplex assemblies implies that there is not always a singleinvarian
e group for an assembly.Using de�nitions 2 and 3 is not su�
ient to des
ribe all GCS built on our geometri
 universebe
ause of the 
losed 
hains. For simpli�
ation purpose, we 
onsider a 
losed 
hain as a simpleor 
omplex assembly with one or more 
losure 
onditions. This allows us to 
onsider only binaryassemblies, and 
onsiderably simplify the data stru
tures.De�nition 6: Closure 
onditionLet S be a simple or a 
omplex assembly and c 6∈ S a 
onstraint linking an entity of ea
h of thetwo assembled systems. c is a 
losure 
ondition of S if S + c is not rigid and 
annot be de
omposedin two systems S1 and S2 su
h that S + c is a simple or a 
omplex assembly of S1 and S2. �3.2.2 G-referen
esA referen
e for a G-system S (i.e. well-
onstrained modulo G) is a GCS R, whose entities are allin S, su
h that S ∪ R has one and only one solution (resp. a �nite number) for the transformationto a
t simply (resp. �nitely) transitively. In the 
ase of a GCS well-
onstrained modulo the rigidmotions, a referen
e 
ould for instan
e be a point and a line to get a �nite number (maximum two)solutions, together with an orientation to get a single solution.For simple rotoid assemblies, a referen
e 
ould be the 
ommon point of the two subsystems,and a line in ea
h subsystem. For simple sliding assemblies, a referen
e 
ould be two points on the
ommon line, one in ea
h of the two subsystems. For positioning assemblies, a referen
e 
onsistsin a referen
e for ea
h of the two subsystems.The notion of referen
e be
omes re
ursive with 
omplex assemblies: for instan
e, a referen
efor a 
omplex rotoid assembly would be the 
ommon point, a line in ea
h of the subsystems, andto this one adds the entities of the subsystems that la
k to have referen
es for the subsystems.We introdu
e the notion of relative referen
e.De�nition 7: Relative referen
eLet G1 and G2 be two transformations groups and S a G1-system. A GCS generated by a 
onstraint

c is a referen
e for G1 relatively to G2 if S + c is a G2-system. �For instan
e, a distan
e between the two extremities of the s
issors is a referen
e for the rotoidtransformations group of the pair of s
issors relatively to the rigid motions group.3.2.3 Border of an assemblyThe usual de�nition of the border is the following:De�nition 8: Border of a rigid systemLet S be a rigid GCS and H any GCS. The border of S relatively to H is the system B = (C, X, A)with X = XS ∩XH, C the set of all distan
es between two points and angles between two lines in
X and A the set of parameters appearing in C, with values being 
omputed from S. �This de�nition does not hold for assemblies. We extended it with a re
ursion ending at the rigidsubsystems. 4



De�nition 9: Border of an assemblyLet S be an assembly of two subsystems S1 and S2 and H any system. The border of S relativelyto H is the union of the borders of S1 and S2 relatively to H. �4 An in
remental assembly algorithmBased on the de�nitions dis
ussed in se
tion 3, we established algorithms to �nd an invarian
egroup of a GCS and dedu
e a 
onstru
tion plan. We detail them in this se
tion. These algorithmswere made with a will of generality, enabling an extension of the geometri
 universe and of the
onsidered invarian
e groups without too mu
h adaptation.4.1 Obtaining the des
ribing termsThe basi
 idea is to 
onsider the 
onstraints of the GCS one by one, and 
ompute an invarian
egroup of the system after the addition of ea
h of them. We must have a list of the terms (in thesense of term logi
) des
ribing the system generated by one 
onstraintThe global algorithm 
onsumes a 
onstraint, �nds the 
orresponding term, and assembles thegenerated system with the already 
onstru
ted system. The fun
tions used in algorithm 1 are thefollowings:Alg. 1 Term des
ribing a GCSRequire: S: a GCSTerm T := EmptyTerm()for all c ∈ Constraints(S) do
T := Assemble(T , Catalog(c))end for

T := AddEntities(T ,S)return T

• EmptyTerm: returns the term des
ribing an empty GCS
• Constraints: returns the set of 
onstraints of a GCS
• Catalog: returns the term des
ribing the system generated by a 
onstraint
• Assemble: returns the term des
ribing the union of any two systems
• AddEntities: 
reates positioning assemblies for geometri
 entities that were not linked byany 
onstraintWe so have an in
remental strategy. Noti
e that the algorithm is extremely general, and mayapply to any geometri
 universe and any set of invarian
e groups, as long as one has the Catalogand Assemble fun
tions.The output of algorithm 1 is a term des
ribing the assembly. If it determines that the system isan assembly of two systems S1 and S2, the output will be A(S1,S2), A being the kind of assembly:

AR for a rotoid assembly, AS and AP for a sliding and a positioning assembly. Knowing the kindof assembly means knowing an invarian
e group.4.2 Assembling two systemsThe fun
tion Propagation(T1, T2) is the 
ore fun
tion of the method: it 
omputes the border of T2relatively to T1 and 
omputes whi
h 
hanges are made to T1 by this border. That is, it �nds theparts of T1 that be
ome rigid by the adjun
tion of T2.Fun
tion DetermineAssembly determines the assembly to 
onstru
t: after the propagation, thenew rigid parts are in
orporated to the �rst system. One just has to see what entities the �rstsystem now has in 
ommon with the rest of the se
ond system: if they have one point in 
ommon,a rotoid assembly is 
onstru
ted, for instan
e.For means of generality and extendability, the 
alls to Propagation are made in a loop, so as toensure that the modi�
ations made to one of the two systems are taken into a

ount in the se
ondsystem. Fun
tion Assemble then works as follows:In our geometri
 universe, the loop is not useful, but one 
an easily imagine more 
omplex
onstraints leading to the ne
essity of several propagations and ba
k-propagations. Moreover, this5



Alg. 2 Term des
ribing the assembly of two systemsRequire: T1, T2: terms des
ribing the systems to assembleTerm buf1 := T1, buf2 := T2while buf1 = T1 or buf2 = T2 dobuf1 := T1,buf2 := T2

T1 := Propagation(T2, T1)
T2 := Propagation(T1, T2)end whilereturn DetermineAssembly(T1, T2)approa
h makes algorithm 2 usable with any two systems, enabling us to give up the in
rementalstrategy if needed.4.3 Closed 
hainsThe propagation method we have been using so far does not always manage to determine therigidity of a system after adding a 
onstraint. The method a
tually works when there exists asubsystem whi
h is a simple assembly and when the added 
onstraint is a relative referen
e for thissimple assembly relatively to the rigid motions group.Otherwise, the propagation method does only 
onsider the new 
onstraint as a 
losure 
ondition.There are di�erent ways to solve this problem: one 
an 
ompute the de�
it [8℄ of the 
losed 
hain,and if it is zero, rewrite the term to show that the 
losed 
hain a
tually is rigid; one may also usea more 
omplex geometri
 reasoning, su
h as a lo
i method [2℄.4.4 Retrieval of a 
onstru
tion planThe algorithms explained above are used to obtain a term des
ribing a GCS, letting the user knowan invarian
e group of the system. The next step is to �nd the parti
ular solutions from whi
h allother solutions 
an be obtained by appli
ation of the transformations.We keep the history of the term 
onstru
tion and of the rewritings due to the dete
tion ofrelative referen
es. Computing the assembly transformation one should apply to a simple assemblyso that it satis�es a relative referen
e is trivial. Knowing the history of the term 
onstru
tion allowsus to build a 
onstru
tion plan based on these transformations.This works as long as the Propagation fun
tion manages to determine the rigidity of a 
losed
hain. Otherwise, we need to use an external solver to get the valid solutions of the rigid subsystem.4.5 Example of useLet us in
rementally build the term des
ribing the GCS of �gure 1, with one possible order of
onstraints 
onsideration. Some steps are shown on �gure 3. Step a shows a rotoid assembly
onstru
ted after the 
onsideration of two distan
e 
onstraints. The addition of an angle 
onstraintleads, through the Propagation fun
tion, to the rewriting of this assembly: the angle is a relativereferen
e, and the resulting system is rigid. At step b, three other distan
e 
onstraints and one anglehave been 
onsumed, resulting in a 
omplex rotoid assembly 
ontaining three rigid subsystems. Theaddition of the distan
e 
onstraint leads to the 
reation of a non rigid 
losed 
hain: this 
onstraintis a 
losure 
ondition. When, at step c, the last angle is added, the rigidi�
ation of the bottom"triangle" is dete
ted, and the 
hanges are propagated, leading to the rigidi�
ation of the wholesystem.The fourth image of �gure 3 (d) shows a 
losed 
hain made of a 
omplex assembly of three rigidbars and a 
losure 
ondition (the fourth distan
e). The addition of the angle 
onstraint for
es ourmethod to use an external solver, be
ause it is not a relative referen
e for an assembly.5 Appli
ationsIn this se
tion, we show the appli
ation �eld and the possibilities granted by our approa
h and byour algorithms. 6



a b

c d

Figure 3: Constru
tion steps of �gure 1 (a, b, 
) and a problemati
 rigid GCS (d)5.1 Homogeneous 
onsideration of GCSThe 
onsideration of invarian
e groups and the generality of our algorithms leads to an homogoneous
apture of the systems to be solved, without a prior sort of under-
onstrained and well-
onstrainedsystems: no hypothesis is made on the GCS. Under-
onstrained and well-
onstrained (in the 
las-si
al sense) systems are handled through the same pro
ess, without adding any 
onstraint.Su
h an approa
h opens the way to softwares where the user sket
hes a GCS and gets theinvarian
e group of the system and the parti
ular solutions from whi
h all other solutions 
an beobtained by transformations of the invarian
e group.The knowledge of the invarian
e group allows the software to build animations showing theuser, to some extent, how the system he sket
hed 
an move. The user 
an then see if his GCS isarti
ulated, s
alable, rigid, et
..The user 
an then "ask a question" about the possibilities of the solutions by adding a new
onstraint (for instan
e: are there solutions where the distan
e between points A and B is x ?").Our in
remental strategy allows us to answer the question without starting the solving pro
essfrom s
rat
h, using the term des
ribing the initial system.5.2 Multi-solver strategyOur method alone does not solve more geometri
 
onstraints problems than other existing solvers, itmainly brings some under-
onstrained systems to the �eld of the solved systems. By integrating itwithin a multi-solver strategy, we also ensure we don't solve less than other solvers. This approa
henables optimal handling of the user's sket
h: should he spe
ify from the beginning that he intendshis system to be well-
onstrained modulo the rigid motions, our strategy would be to use a 
lassi
alde
omposition algorithm, 
alling the algorithms of se
tion 4 only if it 
ame to fail be
ause of anunder-
onstri
tion modulo the rigid motions.Moreover, a multi-solver approa
h allows us to give up the in
remental strategy when it doesnot seem to �t our needs. One 
ould for instan
e prefer the use of a 
lassi
al de
omposition methodto extra
t all greatest rigid subsystems, before �nally using the Assemble fun
tion to assemble themif there is more than one. Should the user be unsatis�ed and ask for a rigid solution, this approa
henables us to add relative referen
es or to use another 
ompletion algorithm, like [8℄.6 Con
lusion and perspe
tivesUnder-
onstrained systems form a problemati
 family in the �eld of geometri
 
onstraints solving.In this paper, we presented an approa
h to homogeneously handle under- and well-
onstrained7



systems. Our method is based on a generalization of the notion of well-
onstri
tion, 
onsideringinvarian
e groups. We exposed the assembly transformations, spe
i�
 to the system to be solved.A 
lass of problems, usually 
onsidered as under-
onstrained, 
an now be seen as well-
onstrainedmodulo assembly transformations. We then built extendable algorithms intended to obtain thedes
ription of a geometri
 
onstraints system as a term together with one of its invarian
e groups.This approa
h appears promising to us. Indeed, in order to use our method with any under-
onstrained system, one only has to �nd the appropriate transformations groups and their relativereferen
es, so as to get the parti
ular solutions from whi
h the whole solution spa
e 
an be gener-ated. Extension of the 
onsidered groups and generalization of the transformration groups are thenext steps of our work.Moreover, we think that this approa
h may lead to a new 
hara
terization of rigidity in 3D.The famous double-banana would then be well-
onstrained modulo the rotations around the linepassing through the two 
ommon points.Referen
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