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strasbg.fr11 Marh 2007AbstratMost of the geometri onstraints solvers onsider systems of onstraints well-onstrainedmodulothe rigid motions group, and either halt on error when they enounter under-onstrained sub-systems, or attempt to add parameterized onstraints so as to get rid of the under-onstrition.We studied transformations groups making well-onstrained some problems that are usually on-sidered as under-onstrained. This leads to new algorithms whih allow an homogeneous handlingof systems of geometri onstraints and thus a better adaptation to the needs of the user.Geometri onstraints solving, Under-onstraint, Invariane under transformations groups1 IntrodutionGeometri onstraints solving in Computer-Aided Design (CAD) aims at yielding a �gure whihmeets some metri requirements (e.g. distanes between points or angles between lines), usuallyspei�ed under graphial form. Solutions are returned as the oordinates of the geometri entities.>From the designer's point of view, there must be one and only one solution to a onstraintssystem, sine it is used to represent a physial objet. Yet, a onstraints system may have nosolutions due to numerial inonsistanies. It is then said over-onstrained. On the other hand, asystem may have an in�nity of solutions when it is under-onstrained, that is to say when there arenot enough onstraints to ompute the position of every geometri entity. In both ases, geometrionstraints solvers usually halt on error, either beause it is impossible to �nd a solution, or beausethey annot hoose one in partiular. Solvers are generally intended to work on well-onstrainedsystems, for whih there is a �nite � but possibly large � number of solutions. For further detailsabout the �eld of geometri onstraints solving and the most e�ient urrent methods, the readermay refer to [4, 7℄.The notion of well-onstrition, though, is ambiguous. Rigid systems, i.e. systems where all dis-tanes and angles are known, are usually onsidered as well-onstrained. The geometri entities ofthese systems have no �xed oordinates. For the designer, moving an objet does not hange it,but in terms of oordinates, there is an in�nity of solutions.Expliitly expressing an invariane group an solve this ambiguity: if there are a �nite numberof solutions from whih, using transformations of a given group G, one an generate all the so-lutions of the system, these solutions are invariant under the group G. The system itself is saidwell-onstrained modulo the invariane group. A rigid objet is then well-onstrained modulo therigid motions.Using lassial transformations groups (rotations, translations, saling operations, and theirompositions) solves the ambiguity explained above. In this paper, we present a way to extendthis approah so as to get an homogeneous way of handling well-onstrained and under-onstrained1



Figure 1: Rigid GCS Figure 2: Non rigid GCSsystems: we expose transformations groups that are spei� to the system to be solved, ating onlyon parts of it. This enables us to build algorithms working on any kind of geometri onstraintssystems, without prior hypothesis on its level of onstrition.The rest of this paper is organized as follows. Setion 2 is an overview of existing work aboutunder-onstrition. Setion 3 explains the philosophy and neessary de�nitions of our approah.Setion 4 desribes algorithms aiming at obtaining an invariane group of a system. Setion 5disusses the appliation �elds and the advantages of our approah.2 Related workDetetion and eradiation of under-onstrition are major issues in the �eld of geometri on-straints systems, sine most of the resolution methods make the hypothesis that the system iswell-onstrained. The possibility to determine the well-onstrition of a subsystem even is manda-tory for deomposition methods [7℄.Most of the methods to detet under-onstrained parts of a system are based on �ows, followingthe approah of Latham and Middledith [10℄. In [6℄, Jermann et al. proposed a �ow-based methodextending the one of Ho�mann et al. [5℄ and onsidering a more generalized notion of rigidity whihinludes numerial onsistany.In [14℄, Sitharam and Zhou introdued an approximate rigidity haraterization in 3D distaneonstraint graphs, alled module-rigidity.The witness on�guration method of Mihelui and Foufou [12℄ is a numerial method that alsoallows the detetion of non-rigid parts by omputing Cayley-Menger determinants.Sine deteting an under-onstrained system only allows the software to produe a warning tothe user, automatially transforming it into a well-onstrained system is a major issue in CAD.An important work on this domain was done by Joan-Arinyo et al. [8℄, introduing the notion ofde�it and explaining a deomposition method, based on a modi�ation of Owen's algorithm, thatextrats under-onstrained subsystems and �nds whih parameterized onstraints should be addedto deal with the under-onstrition.Based on this method, Gao et al. [3℄ proposed e�ient ompletion algorithms. Another suessfulattempt is the one of Li et al. [11℄, whih deals with under- and over-onstrained systems in 3dimensions, but has a high omplexity.All these methods need to rerun the algorithm from srath when the user adds a new onstraint.In the �eld of mehanisms, a lot of work has been done on the synthesis of artiulated systemsand the omputation of motion abilities of a given solution under kinemati onstraints. To ourknowledge, few papers are about methods to �nd an initial position to a mehanism designed withonstraints. For more details, see [1℄ and referenes therein.The works by Kramer [9℄ are based on an inremental assembly of geometri objets duringwhih the algorithm rekons the degrees of freedom up at linking points. The degrees are removedwith the onsideration of the inidene onstraints and using a simple loi method. If some degreesstill remain though all objets and onstraints have been onsumed, a point of artiulation is found.This approah may fail with some systems, suh as the one on �gure 1, where the lengths of the"inner triangle" are not omputed. 2



In [13℄, we solved the ambiguity evoked in the introdution by onsidering as well-onstrainedmodulo a transformations group a system with a �nite number of solutions from whih, using thetransformations, all solutions an be obtained.3 Towards a new de�nition of well-onstritionAs seen in setion 2, most urrent appliations try to add parameterized onstraints so as to getrid of the under-onstrition, but this approah is somehow limited by a few problems. First of all,not all under-onstrained systems an urrently be deteted, and there is no omplete algorithm toadd parameterized onstraints to any known under-onstrained system. Even if suh an algorithmexisted, one still would not be assured to satisfy the user's will, sine there often are several waysto add onstraints, but not all have a "meaning" for the user.Moreover, a user may want to sketh an under-onstrained system. For instane, a pair ofsissors has a remaining degree of freedom due to the rotating possibility around the linking pointof the two sissors.3.1 MotivationOur approah intends to avoid these drawbaks by generalizing the notion of well-onstrition tounder-onstrained systems, and �nding ways to handle them the same way we handle lassialwell-onstrained systems. We onsider a system as well-onstrained modulo an invariane group.De�nition 1: Well onstrition modulo an invariane groupA geometri onstraints system S is well-onstrained modulo a group G if there exists a �nitenumber of partiular solutions S1...Sn of S suh that any solution of S an be obtained by theappliation of a transformation of G to one of the n partiular solutions. �In [13℄, we onsidered lassial geometrial transformations groups, suh as the eulidean group,the rigid motions or the similarities. Considering only these groups does not help here, sine it stillimplies many prior onditions on the system to be solved.Without prior hypothesis on the system, there always exists at least one invariane group:the group of the permutations of the solutions. This group is spei� to the system, and theorresponding transformations exist only for its solutions. Obviously, this group annot be usefulbeause it involves the prior knowledge of all the solutions, whih is preisely the goal of geometrionstraints solving.Our approah is an intermediary approah: by studying the system, we build transformationsgroups, spei� to the system to be solved. These transformations are based on lassial groups(i.e. translations, rotations and saling operations) but may apply only to some parts of the solution�gures. For instane, a GCS desribing a pair of sissors is well-onstrained modulo a group, whihwe all a rotoid transformations group, onsisting in a translation of the linking point of the twosissors, and of two rotations around this point, eah applying only to one of the sissors.3.2 De�nitions and terminologyIn this paper, we assume that the onsidered systems are 2D systems with distanes and anglesbetween points and lines.De�nition 2: Solutions of a GCSA geometri onstraints system is a triple S = (C, X, A) with C (the onstraints) a set of propo-sitional terms on X ∪ A, X the set of unknowns, generally geometri entities, and A the set ofparameters, i.e. metri values of the onstraints or entities with given oordinates.A solution of S is a valuation of the unknowns in the onsidered geometri universe. �3.2.1 Assembly transformationsBased on our geometri universe, we built three families of transformations groups: rotoid trans-formations, sliding transformations and positioning transformations. We all transformations ofone of these families assembly transformations. Let us �rst de�ne on whih kind of systems thesetransformations apply.De�nition 3: Non rigid assembliesLet S be the union of two non self-inluded GCS S1 and S2, suh that S1 and S2 share one andonly one point p, and suh that there is no onstraint in S onerning both one geometri entity of
S1 and one of S2, exept p. S is alled a rotoid assembly of S1 and S2. We similarly de�ne a sliding3



(resp. positioning) assembly as a the union of two subsystems with only a line (resp. nothing) inommon. �De�nition 4: Simple and omplex assembliesLet S be a rotoid, sliding or positioning assembly of two subsystems S1 and S2. If both S1 and S2are well-onstrained modulo rigid motions, S is alled a simple assembly. Otherwise, it is alled aomplex assembly. �The assembly transformations are de�ned as follows (the notation f |S stands for the restritionof �gure f to the subsystem S).De�nition 5: Assembly transformationsLet S be a rotoid assembly of two subsystems S1 and S2 with p their ommon point, and let faand fb be two solutions of S. A rotoid transformation of fa into fb onsists in the omposition of
• a rigid motion of fa with result f ′

a
suh that values of point p in f ′

a
and fb are the same

• a rotation of f ′

a
|S1

around the ommon point p suh that f ′

a
|S1

and fb|S1
oinide

• a rotation of f ′

a
|S2

around the ommon point p suh that f ′

a
|S2

and fb|S2
oinideWe similarly de�ne a sliding transformation as a rigid motion and two translations along theommon line, and a positioning transformation as two rigid motions. �This last de�nition implies that fa|Si

and fb|Si
, i ∈ [1, 2], are superposable, thus requiringprior assembly transformations on S1 or S2 if those subsystems are themselves simple or omplexassemblies. Notie that the existene of omplex assemblies implies that there is not always a singleinvariane group for an assembly.Using de�nitions 2 and 3 is not su�ient to desribe all GCS built on our geometri universebeause of the losed hains. For simpli�ation purpose, we onsider a losed hain as a simpleor omplex assembly with one or more losure onditions. This allows us to onsider only binaryassemblies, and onsiderably simplify the data strutures.De�nition 6: Closure onditionLet S be a simple or a omplex assembly and c 6∈ S a onstraint linking an entity of eah of thetwo assembled systems. c is a losure ondition of S if S + c is not rigid and annot be deomposedin two systems S1 and S2 suh that S + c is a simple or a omplex assembly of S1 and S2. �3.2.2 G-referenesA referene for a G-system S (i.e. well-onstrained modulo G) is a GCS R, whose entities are allin S, suh that S ∪ R has one and only one solution (resp. a �nite number) for the transformationto at simply (resp. �nitely) transitively. In the ase of a GCS well-onstrained modulo the rigidmotions, a referene ould for instane be a point and a line to get a �nite number (maximum two)solutions, together with an orientation to get a single solution.For simple rotoid assemblies, a referene ould be the ommon point of the two subsystems,and a line in eah subsystem. For simple sliding assemblies, a referene ould be two points on theommon line, one in eah of the two subsystems. For positioning assemblies, a referene onsistsin a referene for eah of the two subsystems.The notion of referene beomes reursive with omplex assemblies: for instane, a referenefor a omplex rotoid assembly would be the ommon point, a line in eah of the subsystems, andto this one adds the entities of the subsystems that lak to have referenes for the subsystems.We introdue the notion of relative referene.De�nition 7: Relative refereneLet G1 and G2 be two transformations groups and S a G1-system. A GCS generated by a onstraint

c is a referene for G1 relatively to G2 if S + c is a G2-system. �For instane, a distane between the two extremities of the sissors is a referene for the rotoidtransformations group of the pair of sissors relatively to the rigid motions group.3.2.3 Border of an assemblyThe usual de�nition of the border is the following:De�nition 8: Border of a rigid systemLet S be a rigid GCS and H any GCS. The border of S relatively to H is the system B = (C, X, A)with X = XS ∩XH, C the set of all distanes between two points and angles between two lines in
X and A the set of parameters appearing in C, with values being omputed from S. �This de�nition does not hold for assemblies. We extended it with a reursion ending at the rigidsubsystems. 4



De�nition 9: Border of an assemblyLet S be an assembly of two subsystems S1 and S2 and H any system. The border of S relativelyto H is the union of the borders of S1 and S2 relatively to H. �4 An inremental assembly algorithmBased on the de�nitions disussed in setion 3, we established algorithms to �nd an invarianegroup of a GCS and dedue a onstrution plan. We detail them in this setion. These algorithmswere made with a will of generality, enabling an extension of the geometri universe and of theonsidered invariane groups without too muh adaptation.4.1 Obtaining the desribing termsThe basi idea is to onsider the onstraints of the GCS one by one, and ompute an invarianegroup of the system after the addition of eah of them. We must have a list of the terms (in thesense of term logi) desribing the system generated by one onstraintThe global algorithm onsumes a onstraint, �nds the orresponding term, and assembles thegenerated system with the already onstruted system. The funtions used in algorithm 1 are thefollowings:Alg. 1 Term desribing a GCSRequire: S: a GCSTerm T := EmptyTerm()for all c ∈ Constraints(S) do
T := Assemble(T , Catalog(c))end for

T := AddEntities(T ,S)return T

• EmptyTerm: returns the term desribing an empty GCS
• Constraints: returns the set of onstraints of a GCS
• Catalog: returns the term desribing the system generated by a onstraint
• Assemble: returns the term desribing the union of any two systems
• AddEntities: reates positioning assemblies for geometri entities that were not linked byany onstraintWe so have an inremental strategy. Notie that the algorithm is extremely general, and mayapply to any geometri universe and any set of invariane groups, as long as one has the Catalogand Assemble funtions.The output of algorithm 1 is a term desribing the assembly. If it determines that the system isan assembly of two systems S1 and S2, the output will be A(S1,S2), A being the kind of assembly:

AR for a rotoid assembly, AS and AP for a sliding and a positioning assembly. Knowing the kindof assembly means knowing an invariane group.4.2 Assembling two systemsThe funtion Propagation(T1, T2) is the ore funtion of the method: it omputes the border of T2relatively to T1 and omputes whih hanges are made to T1 by this border. That is, it �nds theparts of T1 that beome rigid by the adjuntion of T2.Funtion DetermineAssembly determines the assembly to onstrut: after the propagation, thenew rigid parts are inorporated to the �rst system. One just has to see what entities the �rstsystem now has in ommon with the rest of the seond system: if they have one point in ommon,a rotoid assembly is onstruted, for instane.For means of generality and extendability, the alls to Propagation are made in a loop, so as toensure that the modi�ations made to one of the two systems are taken into aount in the seondsystem. Funtion Assemble then works as follows:In our geometri universe, the loop is not useful, but one an easily imagine more omplexonstraints leading to the neessity of several propagations and bak-propagations. Moreover, this5



Alg. 2 Term desribing the assembly of two systemsRequire: T1, T2: terms desribing the systems to assembleTerm buf1 := T1, buf2 := T2while buf1 = T1 or buf2 = T2 dobuf1 := T1,buf2 := T2

T1 := Propagation(T2, T1)
T2 := Propagation(T1, T2)end whilereturn DetermineAssembly(T1, T2)approah makes algorithm 2 usable with any two systems, enabling us to give up the inrementalstrategy if needed.4.3 Closed hainsThe propagation method we have been using so far does not always manage to determine therigidity of a system after adding a onstraint. The method atually works when there exists asubsystem whih is a simple assembly and when the added onstraint is a relative referene for thissimple assembly relatively to the rigid motions group.Otherwise, the propagation method does only onsider the new onstraint as a losure ondition.There are di�erent ways to solve this problem: one an ompute the de�it [8℄ of the losed hain,and if it is zero, rewrite the term to show that the losed hain atually is rigid; one may also usea more omplex geometri reasoning, suh as a loi method [2℄.4.4 Retrieval of a onstrution planThe algorithms explained above are used to obtain a term desribing a GCS, letting the user knowan invariane group of the system. The next step is to �nd the partiular solutions from whih allother solutions an be obtained by appliation of the transformations.We keep the history of the term onstrution and of the rewritings due to the detetion ofrelative referenes. Computing the assembly transformation one should apply to a simple assemblyso that it satis�es a relative referene is trivial. Knowing the history of the term onstrution allowsus to build a onstrution plan based on these transformations.This works as long as the Propagation funtion manages to determine the rigidity of a losedhain. Otherwise, we need to use an external solver to get the valid solutions of the rigid subsystem.4.5 Example of useLet us inrementally build the term desribing the GCS of �gure 1, with one possible order ofonstraints onsideration. Some steps are shown on �gure 3. Step a shows a rotoid assemblyonstruted after the onsideration of two distane onstraints. The addition of an angle onstraintleads, through the Propagation funtion, to the rewriting of this assembly: the angle is a relativereferene, and the resulting system is rigid. At step b, three other distane onstraints and one anglehave been onsumed, resulting in a omplex rotoid assembly ontaining three rigid subsystems. Theaddition of the distane onstraint leads to the reation of a non rigid losed hain: this onstraintis a losure ondition. When, at step c, the last angle is added, the rigidi�ation of the bottom"triangle" is deteted, and the hanges are propagated, leading to the rigidi�ation of the wholesystem.The fourth image of �gure 3 (d) shows a losed hain made of a omplex assembly of three rigidbars and a losure ondition (the fourth distane). The addition of the angle onstraint fores ourmethod to use an external solver, beause it is not a relative referene for an assembly.5 AppliationsIn this setion, we show the appliation �eld and the possibilities granted by our approah and byour algorithms. 6



a b
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Figure 3: Constrution steps of �gure 1 (a, b, ) and a problemati rigid GCS (d)5.1 Homogeneous onsideration of GCSThe onsideration of invariane groups and the generality of our algorithms leads to an homogoneousapture of the systems to be solved, without a prior sort of under-onstrained and well-onstrainedsystems: no hypothesis is made on the GCS. Under-onstrained and well-onstrained (in the las-sial sense) systems are handled through the same proess, without adding any onstraint.Suh an approah opens the way to softwares where the user skethes a GCS and gets theinvariane group of the system and the partiular solutions from whih all other solutions an beobtained by transformations of the invariane group.The knowledge of the invariane group allows the software to build animations showing theuser, to some extent, how the system he skethed an move. The user an then see if his GCS isartiulated, salable, rigid, et..The user an then "ask a question" about the possibilities of the solutions by adding a newonstraint (for instane: are there solutions where the distane between points A and B is x ?").Our inremental strategy allows us to answer the question without starting the solving proessfrom srath, using the term desribing the initial system.5.2 Multi-solver strategyOur method alone does not solve more geometri onstraints problems than other existing solvers, itmainly brings some under-onstrained systems to the �eld of the solved systems. By integrating itwithin a multi-solver strategy, we also ensure we don't solve less than other solvers. This approahenables optimal handling of the user's sketh: should he speify from the beginning that he intendshis system to be well-onstrained modulo the rigid motions, our strategy would be to use a lassialdeomposition algorithm, alling the algorithms of setion 4 only if it ame to fail beause of anunder-onstrition modulo the rigid motions.Moreover, a multi-solver approah allows us to give up the inremental strategy when it doesnot seem to �t our needs. One ould for instane prefer the use of a lassial deomposition methodto extrat all greatest rigid subsystems, before �nally using the Assemble funtion to assemble themif there is more than one. Should the user be unsatis�ed and ask for a rigid solution, this approahenables us to add relative referenes or to use another ompletion algorithm, like [8℄.6 Conlusion and perspetivesUnder-onstrained systems form a problemati family in the �eld of geometri onstraints solving.In this paper, we presented an approah to homogeneously handle under- and well-onstrained7



systems. Our method is based on a generalization of the notion of well-onstrition, onsideringinvariane groups. We exposed the assembly transformations, spei� to the system to be solved.A lass of problems, usually onsidered as under-onstrained, an now be seen as well-onstrainedmodulo assembly transformations. We then built extendable algorithms intended to obtain thedesription of a geometri onstraints system as a term together with one of its invariane groups.This approah appears promising to us. Indeed, in order to use our method with any under-onstrained system, one only has to �nd the appropriate transformations groups and their relativereferenes, so as to get the partiular solutions from whih the whole solution spae an be gener-ated. Extension of the onsidered groups and generalization of the transformration groups are thenext steps of our work.Moreover, we think that this approah may lead to a new haraterization of rigidity in 3D.The famous double-banana would then be well-onstrained modulo the rotations around the linepassing through the two ommon points.Referenes[1℄ J. Alba, M. Doblaré, and L. Graia. A simple method for the synthesis of 2D and 3D meha-nisms with kinemati onstraints. Meh. Mah. Theory, 35(5):645�674, 2000.[2℄ X.-S. Gao, C. Ho�mann, and W.-Q. Yang. Solving spatial basi geometri onstraint on�gu-rations with lous intersetion. In ACM SMA'02, pages 95�104.[3℄ X.-S. Gao and G.-F. Zhang. Well-onstrained ompletion for under-onstrained problems.IJCGA, 16, 2006.[4℄ C. Ho�mann and R. Joan-Arinyo. A brief on onstraint solving. CAD&A, 2005.[5℄ C. Ho�mann, A. Lomonosov, and M. Sitharam. Geometri onstraint deomposition. InGeometri Constraint Solving and Appliations, pages 170�195. Springer, 1998.[6℄ C. Jermann, B. Neveu, and G. Trombettoni. A new strutural rigidity for geometri onstraintssystems. In ADG'02, pages 87�105.[7℄ C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Deomposition of geometri onstraintsystems: a survey. IJCGA, 16, 2006.[8℄ R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana-Pasto. Revisiting deomposi-tion analysis of geometri onstraint graphs. Computer-Aided Design, 36:123�140, 2002.[9℄ G. Kramer. Using degrees of freedom analysis to solve geometri onstraint systems. In ACMsymp. on Solid Modeling CAD/CAM, pages 371�378, 1991.[10℄ R. Latham and A. Middledith. Connetivity analysis : a tool for proessing geometri on-straints. Computer-Aided Design, 28(11):917�928, 1996.[11℄ Y.-T. Li, S.-M. Hu, and J. Sun. A onstrutive approah to solving 3D geometri onstraintsystems using dependene analysis. Computer-Aided Design, 34:97�108, 2002.[12℄ D. Mihelui and S. Foufou. Geometri onstraints solving: the witness on�guration method.Computer-Aided Design, 38:284�299, 2006.[13℄ P. Shrek and P. Mathis. Geometrial onstraint system deomposition: a multi-group ap-proah. IJCGA, 16, 2006.[14℄ M. Sitharam and Y. Zhou. A tratable, approximate, ombinatorial 3D rigidity harateriza-tion. In ADG'04.
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