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tCurrent iterative numeri
al methods, su
h as 
ontinuation or Newton-Raphson, work only on systems for whi
h the 
orresponding matrix is asquare one. The geometri
 
onstraint systems need thus either to have nodegrees of freedom, or to be a system the software 
an an
hor, i.e. a rigidsystem.In this arti
le, we propose a new iterative numeri
al approa
h whi
h
an handle both rigid and under-rigid geometri
 
onstraint systems. It isbased on the translation of the system under the form of a parti
le-springsystem where parti
les 
orrespond to the geometri
 entities and springsto the 
onstraints. We show that 
onsistently over-
onstrained systemsare also solved.We show that our approa
h is promising by giving results of a pro-totype implementation. We propose tra
ks for enhan
ements of the ap-proa
h whi
h 
ould ta
kle its drawba
ks (mainly stability).Keywords : Geometri
 
onstraints solving, Mass-spring system, Numeri-
al iterative 
omputation1 Introdu
tionGeometri
 
onstraint solving is a key fun
tionality in Computer-Aided Design(CAD) software. The basi
 idea is to solve 
onstraints of distan
e, angle, in
i-den
e, tangen
y, et
. applied to geometri
 elements su
h as points, lines, 
ir
les,planes, spheres, et
. A Geometri
 Constraint System (GCS) is a set of su
h 
on-straints, generally given under the form of a te
hni
al sket
h, on whi
h the userintera
tively pla
es the 
onstraints. A solution of a GCS is a set of 
oordinatesof the geometri
 elements (a �gure) whi
h satis�es the 
onstraints. A GCS witha �nite number of solutions is said to be well-
onstrained. If it allows �exions, itis said to be under-
onstrained. When it has no solutions, it is over-
onstrained.1



Mathis and Thierry [20℄ give formal de�nitions of GCS and of their resolutionand de
omposition.The literature 
ontains many di�erent approa
hes of the resolution of GCS,whi
h 
an be roughly 
lassi�ed in four families: rule-based methods performexpli
it geometri
 dedu
tions with expert systems; graph-based methods 
on-sider the 
onstraint graph, where a node represents a geometri
 element andan edge a 
onstraint, and 
ompile the geometri
 knowledge under the form of
ombinatorial rules; symboli
 methods 
onsider the underlying equations andsolve the equation system, forgetting the geometri
 nature of the problem; nu-meri
al methods also translate the GCS into an equation system, but then useiterative 
omputations to approximate the solutions. Whatever the approa
h is,a general trend in the last two de
ades has been to de
ompose the system [14℄,in order to lower the 
omplexity of the resolution as well as to enhan
e theresolution power. For a more 
omplete view of the geometri
 
onstraint solving�eld, the reader may refer to some surveys [13, 15℄.Numeri
al methods are of primary importan
e for an industrial software,be
ause they are 
omplete: they are not limited to a 
ertain 
lass of systemsand are not sensitive to geometri
 theorems whi
h the developpers did not takeinto a

ount. They may su

eed for GCS other methods fail to solve. But
urrent numeri
al methods only work on rigid systems. When they are able tohandle under-
onstrained systems, they do it at the expense of speed.Yet, under-
onstrained systems are important for intera
tive and intuitivesolvers. Non-expert users 
annot be expe
ted to design a well-
onstrained sys-tem, sin
e it is easy, espe
ially with large 
onstraint systems, either to add aredundant 
onstraint by failing to realize that a part is already rigid, or to leavesome parts arti
ulated though the intent was that they be rigid. Moreover,being able to solve any system (if it has solutions) is ne
essary to give feedba
kto the user. For instan
e, intera
tive theorem provers used for geometri
 proofs
annot yet have a drawing feature, whi
h would help the user better understandthe 
urrent situation.In this arti
le, we propose a new approa
h to numeri
ally handle geomet-ri
 
onstraint systems by 
onsidering them as parti
le-spring systems (knownalso as mass-spring systems). Parti
le-spring systems are widely used in 
om-puter graphi
s to simulate the behaviour of deformable obje
ts: mus
les [22℄,
loth [24℄, hair [26℄, surgery tools [16℄ or fa
e expressions [30℄, among manyothers. We propose to use them to �nd approximate solutions of geometri

onstraint systems: geometri
 elements be
ome parti
les and 
onstraints be-
ome springs. We explain the simple implementation we made and show that itgives satisfa
tory results. We show that it 
an solve under-
onstrained and well-
onstrained systems alike. We show that 
onsistently over-
onstrained systems(i.e. systems whi
h are generi
ally over-
onstrained but yet have solutions) arein general solved more qui
kly. Non-
onsistent over-
onstrainedness, though, isshown to be hard to dete
t.The rest of this arti
le is organized as follows. Se
tion 2 reviews relatedwork by detailing the existing numeri
al methods. Se
tion 3 details how webuild a parti
le-spring system from a geometri
 
onstraint system and how we2




ompute its iterative states. Se
tion 5 gives pra
ti
al examples of several geo-metri
 
onstraint systems and of their resolution. Se
tion 5.2 elaborates on thespe
i�
 
ase of 
onsistently over-
onstrained systems. Se
tion 5.3 gives quan-titative results whi
h show that our approa
h, though naively implemented, issatisfa
tory. Se
tion 6 
on
ludes and gives perspe
tives.2 Numeri
al solving methodsNumeri
al methods look for an approximate solution of system F (X, U), with
X the set of geometri
 elements (the unknowns) and U the set of metri
 values,su
h as distan
es and angles (the parameters). F is the equation system 
or-responding to the GCS. The best-known and most 
ommonly used numeri
almethod is the Newton-Raphson method [29℄. It 
onsists in approximating F byits tangent hyperplanes when sear
hing for a root: from an initial �gure f0 andparameters u, it 
onsists in approa
hing a root of F by 
omputing the series
fn+1 = fn−F ′(fn, u)−1F (fn, u) until a su�
iently near-zero �gure is found. Ithas 
onvergen
e issues (see [17, Fig. 1℄) and its attra
tions basins are fra
tals,whi
h may 
ause it to be 
ounter-intuitive(see [17, Fig. 3℄).Another 
ommonly used method is homotopy, also known as 
ontinuation.Introdu
ed in the �eld of geometri
 
onstraint solving by Lamure andMi
helu

i [17℄,it was used by various authors [7, 8℄. For given values of the parameters, themethod 
onsiders the fun
tion H(X, t) = t× F (X) + (1− t)× (F (X)−F (f0)).It indu
es a linear interpolation between H(X, 0) = F (X) − F (f0), whi
h iszero for X = f0, and H(X, 1) = F (X) = 0. The 
ontinuation method 
onsistsin following the 
urves de�ned by the equation system H(X, t) = 0, from t = 0and X = f0 to t = 1. More details on 
ontinuation methods 
an be found in [3℄.Other purely numeri
al methods were proposed but are not often used [1,4, 19, 23℄. Hybrid methods were proposed, 
ombining numeri
al iterations withgraph-based or rule-based reasoning: S
hre
k et al. [25℄ des
ribe a multi-agentsystem where numeri
al methods are used when other formal solvers 
annotsolve the system. Lee et al. [18℄ on the one hand, Ait-Aoudia et al. [2℄ on theother hand, enhan
e their graph-based method by performing numeri
al 
ompu-tations for solving steps whi
h are not feasible 
ombinatorially. Likewise, Fabreand S
hre
k [9℄ extend the work of Gao et al. [10℄ to solve quasi-inde
omposablesystems: they remove a set of 
onstraints so as to be able to de
ompose thesystem and repla
e them by an equivalent number of new 
onstraints; then theyuse Newton-Raphson iterations to 
hange the values of the parameters of thenew 
onstraints in order to satisfy the previously removed 
onstraints.All of these methods require the system to have as many variables as un-knowns, i.e. the system must be generi
ally rigid so that we 
an add three/sixequations in 2D/3D (these additional equations an
hor the system in the plane/spa
e).If the number of variables di�ers from the number of equations, spe
ial te
h-niques must be used, whi
h are 
ostly [17℄.Methods able to numeri
ally handle under-rigid systems are not many: Ge etal. [11℄ 
onsider the sum of squares of the di�erent equations and then test two3



optimization methods. An evolutionary approa
h was proposed by Cao et al. [5℄but the results are not yet satisfa
tory. Geneti
 algorithms are used for 
lassi
al(i.e. non-geometri
) 
onstraint solving [6℄, but none of these methods are spe
i�
to geometri
 
onstraints.3 Parti
le-spring systems and geometri
 
onstraintsA geometri
 
onstraint system (GCS) 
onsists in a set X of geometri
 elements(the unknowns), a set U of metri
 values (the parameters) and a set C of
onstraints. We note G = (C, X, U). The goal of a geometri
 
onstraint solveris to yield valid �gures, that is, for a valuation of U , a valuation of ea
h elementof X su
h that the 
onstraints of C are satis�ed.A parti
le-spring system 
onsists in a set P of parti
les, with no mass, anda set R of springs, ea
h spring being linked to two or more parti
les. It 
an berepresented as a graph (or a hypergraph for springs linked to more than twoparti
les). We thus note S = (P, R). Ea
h spring has a (possibly in�nite) setof stable states, a

ording to the relative positions of the asso
iated parti
les.When it is not in a stable state, a spring applies for
es on its parti
les, pushingor pulling them towards one of its stable states. A parti
le-spring system is saidto be in a stable state if for ea
h parti
le p ∈ P , the sum of the for
es appliedon p by the springs whi
h are not in a stable state is 0. This happens when allsprings are in a stable state or when the for
es applied by the springs 
an
elea
h other.There are mainly two ways to represent a parti
le-spring system [27℄: ex-pli
itly, ea
h iteration 
onsists in 
omputing the for
es that the di�erent springsapply on the parti
les and displa
ing the parti
les a

ordingly ; impli
itly, thedi�erential equations of the parti
les displa
ements are 
onsidered and solved.Impli
it representations yield more stable te
hniques but are less intuitive. Be-
ause our goal was to build a prototype and see if the parti
le-spring approa
h
an be a satisfa
tory solving te
hnique, we 
onsidered an expli
it representation,whi
h is easier to implement.The parti
le-spring system S = (P, R) asso
iated to a GCS G = (C, X, U)is built naturally by transforming ea
h x ∈ X into a parti
le p ∈ P and bytransforming ea
h 
onstraint c ∈ C into a spring r ∈ R. The stable states of aspring r asso
iated to a 
onstraint c are de�ned as the states where the positionof the parti
les of r satisfy c.We give here examples of how to transform 
onstraints into springs. Distan
e
onstraints are the most straightforward: they are asso
iated with 
lassi
alheli
al springs. A heli
al spring is in a stable state when the distan
e betweenits parti
les is exa
tly the metri
 of the 
orresponding 
onstraint. If the distan
ebetween the two parti
les is bigger, the heli
al spring pulls the parti
les towardsea
h other. If the distan
e is shorter, the spring pushes the parti
les apart.Figure 1 illustrates those three 
ases with a heli
al spring 
orresponding to adistan
e 
onstraint with a metri
 of 3. Said otherwise, if there is a distan
e
onstraint with metri
 k between points p1 and p2, the 
orresponding heli
al4



a b 
Figure 1: Heli
al spring 
orresponding to a 3-distan
e 
onstraint: stable state(a) and two unstable states with the 
orresponding for
es applied to the parti
les(b and 
).PSfrag repla
ements a

bm a b 
Figure 2: Torsion spring (a) and two ways to simulate its a
tion: tangentialdispla
ement of a and b (b) ; repla
ement by a heli
al spring between a and b(
).spring applies a for
e of −−→p1p2 ×
k−|−−→p1p2|

|−−→p1p2|
× d on p1, d being a damping fa
tor(see se
tion 4).We take angle 
onstraints into a

ount by torsion springs. In our prototype,we did not expli
itly 
onsider �line parti
les� and de�ne a line by two points.Thus, angles are between three points. Figure 2a illustrates a torsion spring ina stable state. There are several ways to simulate the a
tion of a torsion spring
orresponding to a 
onstraint on angle âmb:1. the physi
s-inspired way is to apply a for
e on a (resp. b) whi
h is orthog-onal to −→ma (resp. −→mb), i.e. simulate a displa
ement along the tangent tothe m-
entered 
ir
le with radius |−→ma| (resp. |−→mb|) ; it is represented on�gure 2b,2. another 
lassi
al way is to simulate the a
tion of the torsion spring witha heli
al spring between a and b ; it is represented on �gure 2
,3. a for
e 
an be applied on parti
le m along the angle bise
tor,4. the torsion spring 
an be simulated by two heli
al springs m-a and m-b.Of 
ourse, hybrid ways 
an be 
onsidered. Choosing a way gives the dire
tionsof the for
e ve
tors applied on the parti
les. Whatever way is 
hosen, their normis 
omputed a

ording to the law of 
osines:

|
−→
ab|2 = |−→ma|2 + |

−→
mb|2 − 2|−→ma||

−→
mb|cos(âmb)To our knowledge, there is no real spring 
orresponding to in
iden
e andtangen
y 
onstraints. We transform these 
onstraints into heli
al springs with5



gliding an
hor points. For instan
e, a point-line in
iden
e 
onstraint 
orre-sponds to a heli
al spring between the point and its orthogonal proje
tion onthe line. This spring has a zero-distan
e stable state.We also 
onsidered 
ir
les, with a 
enter parti
le and a radius. Tangen
y
onstraints are then also zero-distan
e heli
al springs between the 
enter of the
ir
le and its orthogonal proje
tion on the line, together with a virtual heli
alspring between the 
enter of the 
ir
le and its perimeter.4 Iteration algorithmThe iteration algorithm we 
onsidered is straightforward, sin
e we use expli
itrepresentation of the springs. At ea
h step, a loop 
onsiders ea
h spring. Ea
hspring 
omputes the for
es to be applied on ea
h of its parti
les. After this loop,a se
ond loop 
onsiders ea
h parti
le, in order to sum the for
es and apply themon the parti
le. Algorithm 1 gives the pseudo-
ode for this iterative pro
ess.Alg. 1: One iteration step of the solverInput: S = (P, R): a parti
le-spring systemResult: S′: S after one iteration step of the solverforea
h spring r ∈ R doforea
h parti
le p linked to r do
−→
f ← for
e ve
tor applied by r on pStore ve
tor −→f in pforea
h parti
le p ∈ P do

−→v ← Σ−→
f ∈F

(d×
−→
f ), with

• F the set of for
e ve
tors stored in p

• d the damping fa
tor (see below)
p← p +−→vreturn SIn se
tion 3, we explained how to 
ompute the dire
tion of the for
es appliedon the parti
les. It also is easy to 
ompute the norm of these ve
tors if one is toput the parti
les in the right pla
e in only one step: for distan
e 
onstraints, forinstan
e, the norm of ea
h ve
tor is half of the error between the a
tual distan
eand the 
onstraint distan
e. If one were to do this, however, it would result ingreat instability when di�erent for
es are applied in the same global dire
tion,moving a parti
le beyond the wanted position.To avoid this problem, a damping fa
tor must be used. In order to makesure that this damping fa
tor is small enough to prevent a parti
le from goingbeyond the point where the for
es reverse, we use a 1

n
damping fa
tor, where nis the highest number of springs linked to a same parti
le.We do not 
onsider the kineti
 energy of the parti
les, sin
e they have no6



mass. This means that, due to the damping fa
tor, when there are two springsor more, we 
annot rea
h an exa
t solution and 
an only tend to a zero-error.It is possible for the user to ask that some parti
les do not move. If a parti
le
p is an
hored, the for
es applied by the springs linked to p must me modi�eda

ordingly, so that p does not move, and the other parti
les move more.After ea
h step of algorithm 1, we 
ompute the error of the system. We
onsider the minimal error (the error on the spring whi
h is nearest to a stablestate) and the maximal error. We also 
onsider the mean error and the rootmean square (RMS) error. To 
ompute the error on torsion springs, we nor-malize the angle values to the largest distan
e 
onstraint metri
. These values
annot be measured as an error ratio, due to in
iden
e and tangen
y 
onstraints.This leads to several possible stopping 
onditions, a

ording to the di�erenterror statisti
s and to the user's will. If a very pre
ise �gure is needed, the usermay want the solver to stop only when the maximal error is below a given smallthreshold. If the user only needs a rough idea of what a solution looks like, asmall RMS error is enough.Due to the possibility of instabilities, we also 
onsider two other stopping
onditions: rea
hing a given amount of iterations, and rea
hing a stable statewithout having rea
hed a satisfying error value. To identify the latter, we 
om-pare the error modi�
ation of ea
h spring after a step of algorithm 1. If the errormodi�
ations are all below a given ε, we 
onsider the system to have rea
heda stable state. Note that the system may a
tually be globally moving, if thefor
es applied by the di�erent springs de�ne a rigid motion.Algorithm 2 gives the pseudo-
ode of the overall solver.Alg. 2: Parti
le-spring geometri
 
onstraint solverInput:

G = (C, X, U): a geometri
 
onstraint system
X0: initial �gure (valuation of the unknowns)Output:
Xs: approximate solution
b: boolean indi
ating if the solver su

eeded

S = (P, R)← parti
le-spring system 
orresponding to G and X0

e← error statisti
s
i← 0while e is not satisfying do

S ← solving step using algo. 1
i← i + 1
e← error statisti
sif modi�
ations of e are too small or i is too high thenreturn P , falsereturn P , trueThe 
omplexity of the algorithm is as follows: algorithm 1 works in O(|p|+7
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|r|) sin
e it traverses ea
h spring on
e and ea
h parti
le n + 1 times at most, nbeing the maximal number of springs linked to a parti
le, i.e. a small 
onstant.Algorithm 2 uses algorithm 1 and 
omputes errors at ea
h iteration. Computingerrors means traversing ea
h spring and is thus in O(|r|). The overall 
omplexityof ea
h iteration of algorithm 2 is thus O(|p|+2|r|). Sin
e the number of parti
lesis similar to the number of springs, the 
omplexity of the parti
le-spring solveris O(3|p|), i.e. O(|p|).5 Pra
ti
al examplesWe give here pra
ti
al examples of how our parti
le-spring prototype solverbehaves. We then fo
us on the spe
i�
 
ases of torsion springs and detail the
onsequen
es of redundant 
onstraints.Let us 
onsider a GCS with three points p1 . . . p3 and two distan
e 
on-straints: the distan
e between p1 and p2 is 
onstrained to be 2, and the distan
ebetween p2 and p3 must be 3. In this example, the damping fa
tor is 1

2
, 2 beingthe maximal number of springs atta
hed to a single parti
le. On �gure 3a, theinitial distan
e between p1 and p2 is 3 and the distan
e between p2 and p3 is2. The �rst heli
al spring thus applies on p1 a for
e dire
ted towards p2 with anorm of 1 (error to the 
onstrained value) × 1

2
(the for
e is shared among twoparti
les) × 1

2
(damping fa
tor) = 1

4
. It applies a symmetri
 for
e on p2. These
ond heli
al spring applies a for
e ve
tor of norm 1

4
on parti
le p2, pushing itapart from p3, and a symmetri
 for
e on p3. Those four for
es are shown in redon �gure 3a, the blue arrow representing the sum of the for
es applied on p2.After applying these for
es and displa
ing the parti
les, we obtain the posi-tions shown on �gure 3b. The new distan
e between p1 and p2 is approximately

11

5
and the new distan
e between p2 and p3 is approximately 14

5
. The new for
eve
tors have a norm of 0.1 (spring p1�p2) and 0.09 (spring p2�p3). Only the sumof the for
es applied on p2 is shown, sin
e the other ones would be too small tobe visible on the �gure.Systems 
ontaining only distan
e 
onstraints are very satisfyingly solved.For instan
e, the system represented on �gure 4 leads to a maximal error of lessthan 10−4 in about 200 solving steps with random initial values, in about 150solving steps with an initial solution taken from a user sket
h. Note that it isan under-rigid system. 8



Figure 4: Arti
ulatedGCS with two rigid trian-gles Figure 5: Stable non-solution system not re-spe
ting triangular in-equality
PSfrag repla
ements
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Figure 6: Impli
it in-
iden
e 
onstraint when
k4 = Σ3

i=1kiIt qui
kly leads to a stable non-solution state in the 
ase of a triangle whi
hdoes not respe
t the triangular inequality. Figure 5 shows the stable state ob-tained, with the applied for
es represented in red. It su

eeds to �nd a solutionwith a maximal error of 10−5 for a system made only of in
iden
e 
onstraintsand representing a sket
h of the Pappus theorem, in about 200 iterations.It takes, however, a long time to get a satisfying solution in 
ases wheredistan
e 
onstraints lead to an in
iden
e: �gure 6 shows su
h a system. Sin
ethe for
es applied on middle points, are dire
ted towards the other points, the
loser the point gets to the biggest segment, to smallest the for
e attra
ting itgets. It takes our prototype 3000 iterations to get from a 7 × 10−3 maximalerror to a 10−3 maximal error on this system.Besides, our prototype �nds a solution to the ten spheres problem (see [17,Fig.1℄) for initial values where the Newton-Raphson method diverges. It gets a
10−3 maximal error in 600 iterations and a 10−6 maximal error in 800 iterations.5.1 Torsion springsAngle 
onstraints are the weakest point of our prototype, sin
e we 
ould not�nd a generally satisfying way to simulate torsion springs, among the ones 
itedin se
tion 3. Indeed, using way 4 (repla
ing the torsion spring by two heli
alsprings a −m and b −m) leads to a qui
k resolution of the system of �gure 7.The three other ways lead either to unstable state or to stable non-solutionstates. On the other hand, the system of �gure 8 qui
kly 
onverges towards asolution with the three other ways but leads to a stable non-solution state withway 4 or with any hybrid way partially using it.5.2 Consistent over-
onstraintsUnlike most solving methods, our solver a

epts 
onsistent over-
onstraints: the
orresponding springs apply for
es whi
h are 
onsistent with the other for
es.A
tually, 
onsistent over-
onstraints may even lead to more pre
ision, at the9
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Figure 7: Rigid system solved with way 4 for angle
onstraints; sket
h (left) and initial values (right) Figure 8: Rigid systemsolved with any way butway 4
Figure 9: Rigid unde
om-posable 2D system Figure 10: Addition of re-dundant 
onstraints Figure 11: Highly redun-dant version of the GCSpossible extense of resolution speed. For instan
e, let us 
onsider the 2D systemof �gure 9: it is made of six points and 9 distan
es. Our solver only su

eeds tosolve it with a maximal error of 10−3. If we add, for ea
h of the 9 
onstraints,a double-triangle (�gure 10 shows how the distan
e 
onstraint between the twothi
k points leads to the 
reation of two new points and 5 new distan
e 
on-straints), leading to the system of �gure 11, then the system is solved with amaximal error of 10−7.Likewise, even without adding new geometri
 entities, we noti
ed that adding
onsistent 
onstraints leads to more pre
ision. For instan
e, adding redundant
onstraints to a 3D system representing a Stewart platform [28℄ helped us redu
ethe maximal error from 10−2 to 10−6.This means that when using a parti
le-spring solver, the user needs not worryabout addint too mu
h information, whereas on 
lassi
al solvers, it is ne
essaryto dete
t redundan
y and get rid of it.

10



Table 1: Number of iterations needed to rea
h given pre
isionsNormal version With redundan
y
10−2 10−6 10−2 10−6Fig. 4 89 252Fig. 9 353 * 902 87762D desklamp 153 * 253 7567Pappus theorem 121 2804-
onne
ted GCS 2092 6054 2348 8035Ten spheres 515 8183D 
ube 127 492 346 9303D pyramid 96 343Stewart platform 724 * 1027 9525.3 Quantitative resultsTable 1 gives the number of iterations needed to rea
h given threshold error,with or without redundan
y, for a series of geometri
 
onstraint systems. A starindi
ates that the software rea
hed a stable state before rea
hing this pre
ision,or that it rea
hed 10 000 iterations. An empty 
ase indi
ates we dit not try this
on�guration.The systems mentioned in table 1 are the following ones:

• the 2D desklamp, the 3D 
ube and the 3D pyramid are 
lassi
al examples,
• the �Pappus theorem� system 
onsists in 9 points and eight in
iden
e 
on-straints of a point to a line passing by two points,
• the �4-
onne
ted GCS� system 
orresponds to the system of Fig. 9a of [21℄,
• the �ten spheres� system 
orresponds to the system of Fig. 1 of [17℄,
• the �Stewart platform� systems 
orresponds to a system as des
ribedin [28℄.6 Con
lusion and perspe
tivesWe presented a new approa
h to solve geometri
 
onstraint systems, based ontheir translation under the form of a parti
le-spring system. We implemented aprototype, using an expli
it representation of parti
le-spring systems. Thoughthis leads to 
ases of instability, we gave results showing that this approa
h ispromising and already satisfying for appli
ations where a very small pre
isionis not needed, for instan
e when the user only wants to get rough feedba
k onwhat the solutions look like.It works on 2D and 3D systems, rigid or arti
ulated. It a

epts redun-dan
y, whi
h even leads to more pre
ise results, yet at the expense of resolution11



speed. Note that parti
le-spring systems 
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it representation, whi
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