A particle-spring approach to geometric
constraints solving

Simon E.B. THIERRY
LSIIT, UMR CNRS-UdS 7005
Université de Strasbourg
simon.thierryQunistra.fr

March 2011

Abstract

Current iterative numerical methods, such as continuation or Newton-
Raphson, work only on systems for which the corresponding matrix is a
square one. The geometric constraint systems need thus either to have no
degrees of freedom, or to be a system the software can anchor, i.e. a rigid
system.

In this article, we propose a new iterative numerical approach which
can handle both rigid and under-rigid geometric constraint systems. It is
based on the translation of the system under the form of a particle-spring
system where particles correspond to the geometric entities and springs
to the constraints. We show that consistently over-constrained systems
are also solved.

We show that our approach is promising by giving results of a pro-
totype implementation. We propose tracks for enhancements of the ap-
proach which could tackle its drawbacks (mainly stability).

Keywords : Geometric constraints solving, Mass-spring system, Numeri-
cal iterative computation

1 Introduction

Geometric constraint solving is a key functionality in Computer-Aided Design
(CAD) software. The basic idea is to solve constraints of distance, angle, inci-
dence, tangency, etc. applied to geometric elements such as points, lines, circles,
planes, spheres, etc. A Geometric Constraint System (GCS) is a set of such con-
straints, generally given under the form of a technical sketch, on which the user
interactively places the constraints. A solution of a GCS is a set of coordinates
of the geometric elements (a figure) which satisfies the constraints. A GCS with
a finite number of solutions is said to be well-constrained. If it allows flexions, it
is said to be under-constrained. When it has no solutions, it is over-constrained.

Mathis and Thierry [20] give formal definitions of GCS and of their resolution
and decomposition.

The literature contains many different approaches of the resolution of GCS,
which can be roughly classified in four families: rule-based methods perform
explicit geometric deductions with expert systems; graph-based methods con-
sider the constraint graph, where a node represents a geometric element and
an edge a constraint, and compile the geometric knowledge under the form of
combinatorial rules; symbolic methods consider the underlying equations and
solve the equation system, forgetting the geometric nature of the problem; nu-
merical methods also translate the GCS into an equation system, but then use
iterative computations to approximate the solutions. Whatever the approach is,
a general trend in the last two decades has been to decompose the system [14],
in order to lower the complexity of the resolution as well as to enhance the
resolution power. For a more complete view of the geometric constraint solving
field, the reader may refer to some surveys [13,15].

Numerical methods are of primary importance for an industrial software,
because they are complete: they are not limited to a certain class of systems
and are not sensitive to geometric theorems which the developpers did not take
into account. They may succeed for GCS other methods fail to solve. But
current numerical methods only work on rigid systems. When they are able to
handle under-constrained systems, they do it at the expense of speed.

Yet, under-constrained systems are important for interactive and intuitive
solvers. Non-expert users cannot be expected to design a well-constrained sys-
tem, since it is easy, especially with large constraint systems, either to add a
redundant constraint by failing to realize that a part is already rigid, or to leave
some parts articulated though the intent was that they be rigid. Moreover,
being able to solve any system (if it has solutions) is necessary to give feedback
to the user. For instance, interactive theorem provers used for geometric proofs
cannot yet have a drawing feature, which would help the user better understand
the current situation.

In this article, we propose a new approach to numerically handle geomet-
ric constraint systems by considering them as particle-spring systems (known
also as mass-spring systems). Particle-spring systems are widely used in com-
puter graphics to simulate the behaviour of deformable objects: muscles [22],
cloth [24], hair [26], surgery tools [16] or face expressions [30], among many
others. We propose to use them to find approximate solutions of geometric
constraint systems: geometric elements become particles and constraints be-
come springs. We explain the simple implementation we made and show that it
gives satisfactory results. We show that it can solve under-constrained and well-
constrained systems alike. We show that consistently over-constrained systems
(i.e. systems which are generically over-constrained but yet have solutions) are
in general solved more quickly. Non-consistent over-constrainedness, though, is
shown to be hard to detect.

The rest of this article is organized as follows. Section 2 reviews related
work by detailing the existing numerical methods. Section 3 details how we
build a particle-spring system from a geometric constraint system and how we

compute its iterative states. Section 5 gives practical examples of several geo-
metric constraint systems and of their resolution. Section 5.2 elaborates on the
specific case of consistently over-constrained systems. Section 5.3 gives quan-
titative results which show that our approach, though naively implemented, is
satisfactory. Section 6 concludes and gives perspectives.

2 Numerical solving methods

Numerical methods look for an approximate solution of system F(X,U), with
X the set of geometric elements (the unknowns) and U the set of metric values,
such as distances and angles (the parameters). F' is the equation system cor-
responding to the GCS. The best-known and most commonly used numerical
method is the Newton-Raphson method [29]. It consists in approximating F' by
its tangent hyperplanes when searching for a root: from an initial figure fy and
parameters u, it consists in approaching a root of F' by computing the series
frni1 = fn—F'(fn,w) " F(fn,u) until a sufficiently near-zero figure is found. It
has convergence issues (see [17, Fig. 1]) and its attractions basins are fractals,
which may cause it to be counter-intuitive(see [17, Fig. 3]).

Another commonly used method is homotopy, also known as continuation.
Introduced in the field of geometric constraint solving by Lamure and Michelucci [17],
it was used by various authors [7,8]. For given values of the parameters, the
method considers the function H(X,t) =t x F(X)+ (1 —t) x (F(X) — F(fo))-
It induces a linear interpolation between H(X,0) = F(X) — F(fo), which is
zero for X = fo, and H(X,1) = F(X) = 0. The continuation method consists
in following the curves defined by the equation system H(X,t) =0, from ¢t =0
and X = fp to ¢t = 1. More details on continuation methods can be found in [3].

Other purely numerical methods were proposed but are not often used [1,
4,19,23]. Hybrid methods were proposed, combining numerical iterations with
graph-based or rule-based reasoning: Schreck et al. [25] describe a multi-agent
system where numerical methods are used when other formal solvers cannot
solve the system. Lee et al. [18] on the one hand, Ait-Aoudia et al. [2] on the
other hand, enhance their graph-based method by performing numerical compu-
tations for solving steps which are not feasible combinatorially. Likewise, Fabre
and Schreck [9] extend the work of Gao et al. [10] to solve quasi-indecomposable
systems: they remove a set of constraints so as to be able to decompose the
system and replace them by an equivalent number of new constraints; then they
use Newton-Raphson iterations to change the values of the parameters of the
new constraints in order to satisfy the previously removed constraints.

All of these methods require the system to have as many variables as un-
knowns, i.e. the system must be generically rigid so that we can add three/six
equations in 2D /3D (these additional equations anchor the system in the plane/space).
If the number of variables differs from the number of equations, special tech-
niques must be used, which are costly [17].

Methods able to numerically handle under-rigid systems are not many: Ge et
al. [11] consider the sum of squares of the different equations and then test two

optimization methods. An evolutionary approach was proposed by Cao et al. [5]
but the results are not yet satisfactory. Genetic algorithms are used for classical
(i.e. non-geometric) constraint solving [6], but none of these methods are specific
to geometric constraints.

3 Particle-spring systems and geometric constraints

A geometric constraint system (GCS) consists in a set X of geometric elements
(the unknowns), a set U of metric values (the parameters) and a set C' of
constraints. We note G = (C, X, U). The goal of a geometric constraint solver
is to yield valid figures, that is, for a valuation of U, a valuation of each element
of X such that the constraints of C' are satisfied.

A particle-spring system consists in a set P of particles, with no mass, and
a set R of springs, each spring being linked to two or more particles. It can be
represented as a graph (or a hypergraph for springs linked to more than two
particles). We thus note S = (P, R). Each spring has a (possibly infinite) set
of stable states, according to the relative positions of the associated particles.
When it is not in a stable state, a spring applies forces on its particles, pushing
or pulling them towards one of its stable states. A particle-spring system is said
to be in a stable state if for each particle p € P, the sum of the forces applied
on p by the springs which are not in a stable state is 0. This happens when all
springs are in a stable state or when the forces applied by the springs cancel
each other.

There are mainly two ways to represent a particle-spring system [27]: ex-
plicitly, each iteration consists in computing the forces that the different springs
apply on the particles and displacing the particles accordingly ; implicitly, the
differential equations of the particles displacements are considered and solved.
Implicit representations yield more stable techniques but are less intuitive. Be-
cause our goal was to build a prototype and see if the particle-spring approach
can be a satisfactory solving technique, we considered an explicit representation,
which is easier to implement.

The particle-spring system S = (P, R) associated to a GCS G = (C, X,U)
is built naturally by transforming each z € X into a particle p € P and by
transforming each constraint ¢ € C into a spring r € R. The stable states of a
spring r associated to a constraint ¢ are defined as the states where the position
of the particles of r satisfy c.

We give here examples of how to transform constraints into springs. Distance
constraints are the most straightforward: they are associated with classical
helical springs. A helical spring is in a stable state when the distance between
its particles is exactly the metric of the corresponding constraint. If the distance
between the two particles is bigger, the helical spring pulls the particles towards
each other. If the distance is shorter, the spring pushes the particles apart.
Figure 1 illustrates those three cases with a helical spring corresponding to a
distance constraint with a metric of 3. Said otherwise, if there is a distance
constraint with metric k£ between points p; and p2, the corresponding helical

Figure 1: Helical spring corresponding to a 3-distance constraint: stable state
(a) and two unstable states with the corresponding forces applied to the particles
(b and c¢).

)
Q/bx/¢x/\
a b c

Figure 2: Torsion spring (a) and two ways to simulate its action: tangential
displacement of a and b (b) ; replacement by a helical spring between a and b

().

—
spring applies a force of p1ps x %p%l x d on p1, d being a damping factor

(see section 4).

We take angle constraints into account by torsion springs. In our prototype,
we did not explicitly consider “line particles” and define a line by two points.
Thus, angles are between three points. Figure 2a illustrates a torsion spring in
a stable state. There are several ways to simulate the action of a torsion spring
corresponding to a constraint on angle amb:

1. the physics-inspired way is to apply a force on a (resp. b) which is orthog-
onal to md (resp. n’%), i.e. simulate a displacement along the tangent to
the m-centered circle with radius |md| (resp. |wﬁ|) ; it is represented on
figure 2b,

2. another classical way is to simulate the action of the torsion spring with
a helical spring between a and b ; it is represented on figure 2c,

3. a force can be applied on particle m along the angle bisector,

4. the torsion spring can be simulated by two helical springs m-a and m-b.
Of course, hybrid ways can be considered. Choosing a way gives the directions
of the force vectors applied on the particles. Whatever way is chosen, their norm
is computed according to the law of cosines:

|ab|? = |ma|? + |mb|? — 2|ma||mb|cos(amb)

To our knowledge, there is no real spring corresponding to incidence and
tangency constraints. We transform these constraints into helical springs with

gliding anchor points. For instance, a point-line incidence constraint corre-
sponds to a helical spring between the point and its orthogonal projection on
the line. This spring has a zero-distance stable state.

We also considered circles, with a center particle and a radius. Tangency
constraints are then also zero-distance helical springs between the center of the
circle and its orthogonal projection on the line, together with a virtual helical
spring between the center of the circle and its perimeter.

4 TIteration algorithm

The iteration algorithm we considered is straightforward, since we use explicit
representation of the springs. At each step, a loop considers each spring. Each
spring computes the forces to be applied on each of its particles. After this loop,
a second loop considers each particle, in order to sum the forces and apply them
on the particle. Algorithm 1 gives the pseudo-code for this iterative process.

Alg. 1: One iteration step of the solver

Input: S = (P, R): a particle-spring system
Result: S’: S after one iteration step of the solver

foreach spring r € R do
foreach particle p linked to r do
L ? « force vector applied by r on p

Store vector 7 inp

foreach particle p € P do
— .
T — E7€F(d X 7), with

e F the set of force vectors stored in p
e d the damping factor (see below)
Lpe—p+7
return S

In section 3, we explained how to compute the direction of the forces applied
on the particles. It also is easy to compute the norm of these vectors if one is to
put the particles in the right place in only one step: for distance constraints, for
instance, the norm of each vector is half of the error between the actual distance
and the constraint distance. If one were to do this, however, it would result in
great instability when different forces are applied in the same global direction,
moving a particle beyond the wanted position.

To avoid this problem, a damping factor must be used. In order to make
sure that this damping factor is small enough to prevent a particle from going
beyond the point where the forces reverse, we use a % damping factor, where n
is the highest number of springs linked to a same particle.

We do not consider the kinetic energy of the particles, since they have no

mass. This means that, due to the damping factor, when there are two springs
or more, we cannot, reach an exact solution and can only tend to a zero-error.

It is possible for the user to ask that some particles do not move. If a particle
p is anchored, the forces applied by the springs linked to p must me modified
accordingly, so that p does not move, and the other particles move more.

After each step of algorithm 1, we compute the error of the system. We
consider the minimal error (the error on the spring which is nearest to a stable
state) and the maximal error. We also consider the mean error and the root
mean square (RMS) error. To compute the error on torsion springs, we nor-
malize the angle values to the largest distance constraint metric. These values
cannot be measured as an error ratio, due to incidence and tangency constraints.

This leads to several possible stopping conditions, according to the different
error statistics and to the user’s will. If a very precise figure is needed, the user
may want the solver to stop only when the maximal error is below a given small
threshold. If the user only needs a rough idea of what a solution looks like, a
small RMS error is enough.

Due to the possibility of instabilities, we also consider two other stopping
conditions: reaching a given amount of iterations, and reaching a stable state
without having reached a satisfying error value. To identify the latter, we com-
pare the error modification of each spring after a step of algorithm 1. If the error
modifications are all below a given e, we consider the system to have reached
a stable state. Note that the system may actually be globally moving, if the
forces applied by the different springs define a rigid motion.

Algorithm 2 gives the pseudo-code of the overall solver.

Alg. 2: Particle-spring geometric constraint solver

Input:
G = (C,X,U): a geometric constraint system
Xo: initial figure (valuation of the unknowns)
Output:
X, approximate solution
b: boolean indicating if the solver succeeded

S = (P, R) « particle-spring system corresponding to G and X
e « error statistics
i+ 0
while e is not satisfying do

S « solving step using algo. 1

1—1+1

e « error statistics

if modifications of e are too small or i is too high then

| return P, false

return P, true

The complexity of the algorithm is as follows: algorithm 1 works in O(|p| +

Figure 3: One resolution step with 2 springs

|r]) since it traverses each spring once and each particle n 4+ 1 times at most, n
being the maximal number of springs linked to a particle, i.e. a small constant.
Algorithm 2 uses algorithm 1 and computes errors at each iteration. Computing
errors means traversing each spring and is thus in O(|r|). The overall complexity
of each iteration of algorithm 2 is thus O(|p|+2|r|). Since the number of particles
is similar to the number of springs, the complexity of the particle-spring solver
is O(3|pl), i-e- O(|pl)-

5 Practical examples

We give here practical examples of how our particle-spring prototype solver
behaves. We then focus on the specific cases of torsion springs and detail the
consequences of redundant constraints.

Let us consider a GCS with three points p;...p3 and two distance con-
straints: the distance between p; and ps is constrained to be 2, and the distance
between py and ps must be 3. In this example, the damping factor is %, 2 being
the maximal number of springs attached to a single particle. On figure 3a, the
initial distance between p; and p, is 3 and the distance between p, and ps3 is
2. The first helical spring thus applies on p; a force directed towards p, with a
norm of 1 (error to the constrained value) x% (the force is shared among two
particles) x% (damping factor) = i. It applies a symmetric force on ps. The
second helical spring applies a force vector of norm % on particle ps, pushing it
apart from ps, and a symmetric force on p3. Those four forces are shown in red
on figure 3a, the blue arrow representing the sum of the forces applied on ps.

After applying these forces and displacing the particles, we obtain the posi-
tions shown on figure 3b. The new distance between p; and ps is approximately
% and the new distance between p, and ps is approximately %. The new force
vectors have a norm of 0.1 (spring p;—p2) and 0.09 (spring pa—p3). Only the sum
of the forces applied on ps is shown, since the other ones would be too small to
be visible on the figure.

Systems containing only distance constraints are very satisfyingly solved.
For instance, the system represented on figure 4 leads to a maximal error of less
than 10~ in about 200 solving steps with random initial values, in about 150
solving steps with an initial solution taken from a user sketch. Note that it is
an under-rigid system.

)

ka

\

\

Figure 4: Articulated Figure 5: Stable non- Figure 6: Implicit in-
GCS with two rigid trian- solution system not re- cidence constraint when
gles specting triangular in- kg = X3 k;

equality

It quickly leads to a stable non-solution state in the case of a triangle which
does not respect the triangular inequality. Figure 5 shows the stable state ob-
tained, with the applied forces represented in red. It succeeds to find a solution
with a maximal error of 107° for a system made only of incidence constraints
and representing a sketch of the Pappus theorem, in about 200 iterations.

It takes, however, a long time to get a satisfying solution in cases where
distance constraints lead to an incidence: figure 6 shows such a system. Since
the forces applied on middle points, are directed towards the other points, the
closer the point gets to the biggest segment, to smallest the force attracting it
gets. It takes our prototype 3000 iterations to get from a 7 x 1073 maximal
error to a 10~3 maximal error on this system.

Besides, our prototype finds a solution to the ten spheres problem (see [17,
Fig.1]) for initial values where the Newton-Raphson method diverges. It gets a
1073 maximal error in 600 iterations and a 10~% maximal error in 800 iterations.

5.1 Torsion springs

Angle constraints are the weakest point of our prototype, since we could not
find a generally satisfying way to simulate torsion springs, among the ones cited
in section 3. Indeed, using way 4 (replacing the torsion spring by two helical
springs a —m and b — m) leads to a quick resolution of the system of figure 7.
The three other ways lead either to unstable state or to stable non-solution
states. On the other hand, the system of figure 8 quickly converges towards a
solution with the three other ways but leads to a stable non-solution state with
way 4 or with any hybrid way partially using it.

5.2 Consistent over-constraints

Unlike most solving methods, our solver accepts consistent over-constraints: the
corresponding springs apply forces which are consistent with the other forces.
Actually, consistent over-constraints may even lead to more precision, at the

/ . e
5 ps . \4 / ’

Figure 7: Rigid system solved with way 4 for angle Figure 8: Rigid system
constraints; sketch (left) and initial values (right) solved with any way but
way 4

A ==

Figure 9: Rigid undecom- Figure 10: Addition of re- Figure 11: Highly redun-
posable 2D system dundant constraints dant version of the GCS

possible extense of resolution speed. For instance, let us consider the 2D system
of figure 9: it is made of six points and 9 distances. Our solver only succeeds to
solve it with a maximal error of 1073, If we add, for each of the 9 constraints,
a double-triangle (figure 10 shows how the distance constraint between the two
thick points leads to the creation of two new points and 5 new distance con-
straints), leading to the system of figure 11, then the system is solved with a
maximal error of 107,

Likewise, even without adding new geometric entities, we noticed that adding
consistent constraints leads to more precision. For instance, adding redundant
constraints to a 3D system representing a Stewart platform [28] helped us reduce
the maximal error from 102 to 107.

This means that when using a particle-spring solver, the user needs not worry
about addint too much information, whereas on classical solvers, it is necessary
to detect redundancy and get rid of it.

10

Table 1: Number of iterations needed to reach given precisions
Normal version | With redundancy
1072 1076 1072 10°°

Fig. 4 89 252
Fig. 9 353 * 902 8776
2D desklamp 153 * 253 7567

Pappus theorem 121 280
4-connected GCS | 2092 6054 2348 8035

Ten spheres 515 818
3D cube 127 492 346 930
3D pyramid 96 343
Stewart platform | 724 * 1027 952

5.3 Quantitative results

Table 1 gives the number of iterations needed to reach given threshold error,
with or without redundancy, for a series of geometric constraint systems. A star
indicates that the software reached a stable state before reaching this precision,
or that it reached 10 000 iterations. An empty case indicates we dit not try this
configuration.

The systems mentioned in table 1 are the following ones:

e the 2D desklamp, the 3D cube and the 3D pyramid are classical examples,

e the “Pappus theorem” system consists in 9 points and eight incidence con-
straints of a point to a line passing by two points,

e the “4-connected GCS” system corresponds to the system of Fig. 9a of [21],
e the “ten spheres” system corresponds to the system of Fig. 1 of [17],

e the “Stewart platform” systems corresponds to a system as described
in [28].

6 Conclusion and perspectives

We presented a new approach to solve geometric constraint systems, based on
their translation under the form of a particle-spring system. We implemented a
prototype, using an explicit representation of particle-spring systems. Though
this leads to cases of instability, we gave results showing that this approach is
promising and already satisfying for applications where a very small precision
is not needed, for instance when the user only wants to get rough feedback on
what the solutions look like.

It works on 2D and 3D systems, rigid or articulated. It accepts redun-
dancy, which even leads to more precise results, yet at the expense of resolution

11

speed. Note that particle-spring systems can benefit from the high paralleliza-
tion of GPU [12]. A disadvantage of the approach is that non-consistent over-
constrainedness leads to unstable states, but since it is not the only source of
unstable states, it cannot be detected.

We intend to further develop our prototype, by first adding other kinds of
particles (lines, planes, spheres) and the corresponding constraints. We also
intend to test an implicit representation, which would help solve the stability
problems [27] we encounter with torsion springs.

Finally, we want to add features to our prototype, so that the user can
interact with the solutions during the solving process, by moving particles. This
way, the user can get a very effective feedback on the articulations of the system,
by moving a point and seeing which parts of the system are modified.

References

[1] S. Ait-Aoudia. Numerical solving of geometric constraints. In IV ’02: Pro-
ceedings of the 6th international conference on Information Visualisation,
pages 125-129, London, England, United Kingdom, 2002.

[2] S. Ait-Aoudia, H. Badis, and M. Kara. Solving geometric constraints by a
hybrid method. In IV ’01: Proceedings of the 5th international conference
on Information Visualisation, pages 749-753, London, England, United
Kingdom, 2001.

[3] E. L. Allgower and K. Georg. Continuation and path following. Acta
Numerica, 2:1-64, 1993.

[4] A. H. Borning. The programming language aspects of Thinglab, a con-
straint oriented simulation laboratory. ACM Transactions on Programming
Languages and Systems, 3(4):353-387, 1981.

[5] C. H. Cao, W. H. Li, and B. Cong. The geometric constraint solving based
on hybrid genetic algorithm of conjugate gradient. In G. R. Liu, V. B. C.
Tan, and X. Han, editors, Computational Methods, chapter 17, pages 1117—
1121. Springer, 2006.

[6] C. A. Coello Coello. Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: a survey of the state of the art.
Computer Methods in Applied Mechanics and Engineering, 19(11-12):1245—
1287, 2002.

[7] C. Durand. Symbolic and numerical techniques for constraint solving. PhD
thesis, Purdue University, West Lafayette, Indiana, USA, 1998.

[8] C. Durand and C. M. Hoffmann. A systematic framework for solv-

ing geometric constraints analytically. Journal of Symbolic Computation,
30(5):493-519, 2000.

12

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Fabre and P. Schreck. Combining symbolic and numerical solvers to
simplify indecomposable systems solving. In SAC ’08: Proceedings of the
28rd ACM Symposium on Applied Computing, pages 1838-1842, Fortaleza,
Brazil, 2008.

X.-S. Gao, C. M. Hoffmann, and W.-Q. Yang. Solving spatial basic geo-
metric constraint configurations with locus intersection. Computer-Aided
Design, 36(2):111-122, 2004.

J.-X. Ge, S.-C. Chou, and X.-S. Gao. Geometric constraint satisfaction us-
ing optimization methods. Computer-Aided Design, 31(14):867-879, 1999.

J. Georgii and R. Westermann. Mass-spring systems on the GPU. Simula-
tion Modelling Practice and Theory, 13(8):693-702, 2005.

C. M. Hoffmann and R. Joan-Arinyo. A brief on constraint solving.
Computer-Aided Design and Applications, 2(5):655-663, 2005.

C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Decomposition of
geometric constraint systems: a survey. International Journal on Computer
Graphics and Application, 16(5,6):379-414, 2006.

R. Joan-Arinyo. Basics on geometric constraint solving. In EGC ’09: XIIIT
Encuentros de Geometria Computacional, Zaragoza, Spain, 2009. Oral
presentation. Paper available at http://metodosestadisticos.unizar.
es/"egc09/index_archivos/Trabajos/robert.pdf.

T. Jund, D. Cazier, and J.-F. Dufourd. Edge collision detection in complex
deformable environments. In VRIPHYS ’10: Proceedings of the Workshop
on Virtual Reality Interactin and Physical Simulation, Copenhagen, Den-
mark, 2010.

H. Lamure and D. Michelucci. Solving geometric constraints by homotopy.
IEEFE Transactions on Visualization and Computer Graphics, 2(1):28-34,
1996.

K.-Y. Lee, O.-H. Kwon, J.-Y. Lee, and T.-W. Kim. A hybrid approach to
geometric constraint solving with graph analysis and reduction. Advances
in Engineering Software, 34(2):103-113, 2003.

R. Light, V. Lin, and D. C. Gossard. Variational Geometry in CAD. Com-
puter Graphics, 15(3):171-175, 1981.

P. Mathis and S. E. B. Thierry. A formalization of geometric constraint
systems and their decomposition. Formal Aspects of Computing, 22(2):129—
151, 2010.

D. Michelucci, P. Schreck, S. E. B. Thierry, C. Fiinfzig, and J.-D. Génevaux.
Using the witness method to detect rigid subsystems of geometric con-
straints in CAD. In SPM ’10: Proceedings of the 15th ACM Conference on
Solid and Physical Modeling, Haifa, Isragl, 2010.

13

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

L. P. Nedel and D. Thalmann. Real-time muscles deformation using mass-
spring systems. In CGI ’98: Proceedings of the 5th edition of Computer
Graphics International, pages 156—-165, Hannover, Germany, 1998.

G. Nelson. Juno, a constraint-based graphic system. ACM SIGGRAPH
Computer Graphics, 19(3):235-243, 1985.

X. Provot. Deformation constraints in a mass-spring model to describe rigid
cloth behaviour. In GI ’95: Proceedings of the 14th edition of Graphics
Interface, pages 147-154, Québec, Canada, 1995.

P. Schreck, J.-F. Dufourd, and P. Mathis. Using a numerical tool in a formal
construction method with decomposition. In B. Briiderlin and D. Roller, ed-
itors, Proceedings of the 2nd International Conference on Computer Graph-
ics and Artificial Intelligence, pages 211-233. Springer, Limoges, France,
1998.

A. Selle, M. Lentine, and R. Fedkiw. A mass spring model for hair simula-
tion. ACM Transactions on Graphics, 27(3):64.1-64.11, 2008.

M. Shinya. Theories for mass-spring simulation in computer graphics: sta-
bility, costs and improvements. IEICE Transactions on Informatics and
Systems, E88-D(4):767-774, 2005.

D. Stewart. A platform with six degrees of freedom. Aircraft Engineering
and Aerospace Technology, 38(4):30-35, 1966.

T. J. Ypma. Historical development of the Newton-Raphson method. SIAM
Review, 37(4):531-551, 1995.

Y. Zhang, E. C. Prakash, and E. Sung. Real-time physically-based facial
expression using mass-spring system. In CGI ’01: Proceedings of the 8th
edition of Computer Graphics International, pages 347-350, Hong-Kong,
China, 2001.

14

